
AD—A0 9 bl7 SYRACUSL UNIV N 1 001’ oF INDUSTRIAL ENSIIIERINS AN O— — CT C F/il 9/2
MATRIX INVERSI ON USINS Tid R*OC ST ARAN ASS O CIATTVE A RR A% PROC f S~efTC(U)
0CC 77 P I ICflA. £ OLIVER F30602— 7 5—c-Q1g1

tMCLASSIFIFD RAOC—TR—77—316 NI.

.~L[!I ____ _
_ _

UD Efl!U~~QUU

eut.. OLflUiLJI~Ei~S -
a
111111111 DUO _

I
,

I
•A • .

I O W~ 112.8 11112.5‘ I . L

! ~ 32
JJJJJ 2.2

I
________ HIII~hifi ‘ OUI~ ~on •o~

MICROCOPY RESOLUTION TEST CNA~ T
NATIOf ~A1 BUR~A~i OF STA NDA RDS .I963~,~

- - ‘
,

~~~~ - 

.-

* “

3 ~ 
:~

‘-4 ’

/. 
~~~~~~~~~~~~ 

,
-

3 ~~

‘

• ‘ •~
- • -~~

•

3’
‘~~ - &3~ , •‘_

T ” ~~~~~ ~~~~~~~ .— ~~--~~~~-~~ . - - ~~~
••-

~
- .

~~~~----- - — -, .~~~~~~~~~~~~~ ,

UNCLASSIFIED
SECU R~ T ’, C L A S S I F I C A T I O N  OF T H I S  PAGE (Wh en Oat. EaIored)

1~
) REPORT n ru kJTATIr%IJ PACE REA D INSTRUCTIONS

BEFORE COMPLETING FORM
I. REPO T NUMBER 2. GOVT ACCESSION NO 3. REC I PISNVS C A T A L O G  NUMBER

~~~~~~~~ ;77~~~~~~~~~
)

1
TYPE OF REPORT & PERIOD COVERED

~~~~~ ~~~~~~~~Ii 

_ _  
NUMBER

7. AUTHOR(s) B. CONTRACT OR GRANT NUMBER(s)

~~~ ~~~~~~ ce~~ erra 
~~~ F3~6Ø2-75-C~~~~~~]

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT . TASK
AREA & WORK UNIT NUMBERS

Syracuse University/Department of Industrial 627A2
Engineering & Operations Research .~ F

Syracuse NY 13210 I_____

II. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Rome Air Development Center (RBCT) ~~ ~~~~ ~~ 77 I
Griffiss AFB NY 13441 “-•.‘ ~~~~~~~~~~~~~~~~~~~~~

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  

138
¶ 4. MONITORING AGENCY NAME a AODRESS(if dIlfers., ( (rot,, Contro llin g Office) IS. SECURITY Ct*~t(of thIs csport)

UN CLASSIFIED
Same _________________________________

ISa . DECL ASSI FICAT ION DOWNGRADING
SCHEDULE

_____________________________________________ N IA
¶6. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited .

17. DISTRIBUTION STATEMENT (of he abstract .nlered in Block 20, ii different from Report)

Same

IS. SUPPLEMENTARY NOTES

R.ADC Project Engineer: Kenneth R. Siarkiewicz

19. KEY WORDS (Co,,Iinu. en rsc.re. aide if n.c.a.ary end identify by block number)

Associative Processor
Matrix Inversion
Timing Figures

20. ABSTRACT (‘b~rm~tIno. or, rscsras .ide If n.c...ac y and Identify by block number)

The purpose ‘~ç this report is to provide~~~j~port data for RADC—TR— 75—73 . In
this research’~~I~e algorithm reported 1~~~~ 4e-re~~’r~ is implemented on the RADC
STARAN and then used to invert test matrices. Matrices of dimensions 30 x 30,
45 x 45 , 60 x 60 and 80 x 80 are inverted and these results are timed. The
same matrices were inverted using AlL P1us~.at—Syraeuse Urtiversit)~ In the
cases of the 30 x 30 and 45 x 45 matrices, a direct comparision was made; this
comparison indicates a time savings of 11,82% and 15.49% respectively for the ,. 9

DD 
~~~~~~ 

1473 EDITION 01 I NOV 65 IS OBSOLETE UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE ~Wh.n Date F.nt.t.d)

.-iO / / ..,; i~.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _____________



I~7~~—’-~ - - — ii.I _...... ~
.

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAOE(Whw Data Entered)

~ STAR.AN. For the two larger matrices, the APL Plus times were extrapol&ted and
the comparison of this extrapolated time with the STAB.MI time for the 60 x 60
matrix and 80 x 80 matrix indicates a time savings of 31.77% aad 62.44% respec—
tively, for the STARAN .

In addition to reporting the test results, back€round material is presented to
acquaint the reader with the RADCAP facility; this includes a discussion of
STARAN architecture and the specific procedures required to submit a job to
STARAN via the MULTICS system. The object code for inverting a 60 x 60 matrix
is included and discussed in detail. Finally, recommendations for future
research are discussed based upon the new STARAN Model E which has a larger
array size capability.

- .  ... - ‘  FE~ 3 1918 J~
j

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE(WI,en Data Entered)

- 
- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ . .T.


_ _ _ _ _ _ _
-~~ .- -• - - --—

TABLE OF CONTENTS

Introduction 1

RADC STARAN - 1

1. An Overview 1

2. STAR.AN Details S

3. Utilizing RADC STABAN 12

Matrix Inversion 14

Matrix Inversion Application Program — General 20

Timing of Matrix Inversion 23

Future Research 28

Conclusions 37

Appendix A: The Programs Required to Assemble, Link and Execute the A—l
Matrix Inversion Program

Al. The Assembler Program: mat. 1 A 2

A2. The Link Program: alink A-5

A3. The Execution Program: sdm A—6

Appendix B: Details of a 60 x 60 Matrix Inversion Program B—i

B1. Matrix Inversion Program Overview B—2

B2. The Main Program: MTX1 • APL B—2

B3. The Subroutines B—39

1. MTX2 .APL B—39

2. MTX3.APL B-51

3. SUBA.APL B—58

4. SUBB .APL , SUBC .APL , SUBD .APL B—64

i

~~~ . 
— . •.-~~

— — :~~~~ ~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~ ~~~.



FI~ 
- - 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

‘

~~~~~

‘

~~~ ~~~~~~~~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~~ 

Figure 1. Block Diagram of the STARAN Architecture 2

Figure 2. A Block Diagram of STARAN Architecture as Utilized 6
by the Matrix Inversion Program

Figure 3. Al Control Memory 8

Figure 4. STARAN Al Control 9

Figure 5. Patterned Matrices 15

Figure 6. Inverses of Patterned Matrices 16

Figure 7. A 60 x 60 Matrix Loaded Into the Four Arrays 17

Figure 8. An Efficient Way to Load a 30 x 30 Matrix 19

Figure 9. The Matrix Configuration after the First Iteration 22

Figure 10. The Matrix Configuration at the End of the Program 24

Figure 11. Flow Chart of General Matrix Inversion 25

Figure 12. Matrix Inversion Times: AlL Times Extrapolated to 34
80 x 80

Figure 13. The Assembler Program A—4

Figure 14. The Link Program A—7

Figure 15. The Load Map A—8

Figure 16. The Execution Program A-l2

Figure 17. sdm Output A—13

Figure 18. Application Program Variables B—3

Figure 19. Trace Map B—S

Figure 20. Flow Chart for MTX1.APL B—21

Figure 21. MTX1. AlL Listing B—32

Figure 22. Flow Chart for MTX2.APL B—45

Figure 23. MTX2.APL Listing 8—49

Figure 24. Flow Chart for MTX3.APL B—52

Figure 25. ?4TX3.APL Listing B—56

ii

- -
~~~~~~~~~ ~

. ... ~T. -— ~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~
~~~~

-,., 1
~j ’---~r• - -lli -~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



LIST OF FIGURES (cont’d.)

Figure 26. Flow Chart for SUBA.APL B6l

Figure 27. SUSA.APL Listing B—62

Figure 28. Flow Chart for SUBB.APL B65

Figure 29. SUBB.APL Listing B—66

Figure 30. Flow Chart for SUBC.APL B—68

Figure 31. SUBC.APL Listing 8—69

Figure 32.  Flow Chart for SUBD .APL B 7 1

Figure 33. SUBD.APL Listing 8—72

iii 



- 

LIST OF TABLES

Table I. Timing Figures for Inverting Matrices Using AlL at 27
Syracuse University

Table II. Timing Data for a 30 x 30 Matrix 29

- Table III. Timing Data for a 45 x 45 Matrix 30

Table IV. Timing Data for a 60 x 60 Matrix 31

Table V. Timing Data for am 80 x 80 Matrix 32

- Table VI. Average Time in Seconds for Inverting Matrices on 33
- . RADC STARAN
- 

Table VII. A Comparison of AlL and STARAN 35

iv

~

. ~~~~~~~~~~~~~~~~~~ ~~~._. -



—~ -—~~~~~~~- — -~~~ - .-~~~~~~ -~~ ~~—,-— —S

TABLE OF ABRIEVIATIONS AND SYMBOLS

au : A matrix element located in row i and column i

A: A thirty—two bit field in the arrays (i.e. bits 0 to 31)

ALINK: The STARAN APPLE linker

Al: Associative Processor

APPLE: Associative Processor Programming Language

AS: Array Select Register

B: A thirty—two bit field in the arrays (i.e. bits 32 to 63)

BL: Block Length Counter

D: A thirty—two bit field in the arrays (i.e. bits 64 to 95)

DP: Data Pointer

E: A thirty—two bit field in the arrays (i.e. bits 96 to 127) —

EXF: External Function Logic

F: A thirty—two bit field in the arrays (i.e. bits 128 to 159)

FL1: Field Length Counter 1

FL2: Field Length Counter 2

FP1: Field Pointer 1

FP2: Field Pointer 2

FP3: Field Pointer 3

FLE: Field Pointer E

C: A thirty—two bit field in the array (i.e. bits 160 to 191)

H: A thirty—two bit field in the arrays (i.e. bits 192 to 223)

HSDB : High Speed Data Buffer

II4ASK: Status Register and Comparator

JCL: Job Control Language

M: Mask Register —

V

..... L ~~~~~ cSZ T~~ . j~~~ ~~~~~~~~~~~~~~~~~~~~~



MAPPLE : A preprocessor which translates system macros to the assembl~y

language.

MI(J): A mask in array I located in quarter J.

PC: Program Counter

PlO: Parallel Input/Output

RADCAP: Rome Air Development Center Associative Processor

S SDM: STARAN Debug Module

X: The X response register

Y: The Y response register

vi



________________________________________ ____________________ 
- - ...- .- --- —.- —-——-.— .— .—~. .5———— . _____________________

In troduction

This report is a follow—on to RADC—TR—75—73 “Timing Figures for

Inverting Large Matrices Using the STARAN As~~ciative Processor” [1].

In that report an algorithm and timing figures were developed for the

inversion of the A matrix in the system of linear equations

AX B.

In this report the results of another phase of the overall effort are

presented; that of actually inverting matrices utilizing Gauss elimination

on STARAN. For introductory material on the project, associative processor

applications and matrix inversion refer to [1] which is available from

the Defense Documentation Center in Alexandria, Virginia (AD A009643) .

In this report some background on STABAN is provided along with the

utilization of the Rome Air Development Center Associative Processor

(RADCAP) facility of which STARAN is a part. The matrix inversion

process in general, and a matrix inver3ion application program in particular,

are also discussed

RADC STARAN

The intent of this section is to acquaint the reader with RADCAP.

To accomplish this it is divi~ . .~ into three subsections. In the first

subsection an overview of t~ . ~TARAN architecture is presented ; next,

the functional units uti i .5-i by the matrix inversion program are dis-

cussed in detail; and the final subsection gives the procedure for

submitting a job to STARAN.

1. An Overview

Shown in Figure 1 is a general block diagram of the ST/tHAN architec-

ture. As indicated in the figure the basic components are the associati -

1

- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ = - ~~



~~~trol

I Sequential
control

L~~AP Sequential
Control ______

Unit Control — ——----

~ 
$eri~imerais ]

(PDP—il) I

-1
~~~~~~~~ 

.--—

~~~~~~~

-- - . --

ExternalE~
]Cczrnpn 1~ gister 

- 

*

____________  
Flip

-,

ASS~~IATIVE -

ARRAY

I ~ *Parallel Input/Output — plo
Associative Pr ocesso r — AP

FIGU1~~.l. Block Diagram of the ~TT~ AN Architecture

2

— ~~~~~~~~~~~~~~~~~~~~~~~~ ~~—- - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~.:



array, response store, common register, Al control unit, Al control

memory, sequential control, sequential control memory, external function

logic, PlO control, and PlO flip. In this report the term Associative

Processor will be used to include all of these units.

The associative array is a hardware unit in which data are stored.

With STARAN the basic array size is 256 x 256. That is, there are 256

words, and each word is 256 bits in length. The RADC STAR/tN configuration

has four (4) arrays, thus yielding a total array size of 1024 words with

each word being 256 bits in length or 1024 x 256 — 262,144 total bits of

array memory.

Associated with each word of the array is a three bit response store.

It provides arithmetic capabilities, read/write capabilities and an m di—

cation of the results of logical operations. It is also used for masking

words that are not desired in a particular parallel operation.

The common register is 32 bits long and is used in various arithmetic

and search operations on the data in the array. It is also used for load-

ing the array in a “parallel by bit,” “serial by word” basis.

Among other things, the ÀY control unit directs the execution of

the instructions that are stored in the ÀY control memory, which contains

all or part of the user program that is being executed.

The PlO control unit controls the PlO flip network which can shift

and rearrange data so that parallel arithmetic, search and logic operations

can be performed in a variety of ways among the words of the array modules

assigned to it. While ÀY control is processing data in some array modules,

PlO control can input and output data in other array modules.

System diagnostics and peripheral devices are handled by sequential

3 

-—-- - - -—--—.~~~~~~

.-



—- ...

control , a Digital Equipment Corporation (DEC) PDP—ll minicomputer .

Associated with sequential control is the sequential control memory.

Synchronization of the three control units , Al cont rol , PlO con trol

and sequential control , is coordinated by the external function (EXF)

logic.

The ÀY has a large number of search and arithmetic instructions. In

terms of search there are several inst ruc tions that can be executed that

process all activated words in the array . Some of these are equal

(exact mat ch) , next higher, next lower, maximum, minimum, less than or

equal to , less than and greater than . As an example consider an exact

match search. The word that is to be used as the search criteria is

placed in the common register. (Actually, the common register may have

to be loaded up to eight times since it is only 32 bits long.) The word

is then compared on a bit slice basis with each activated word in the

array . Those that match on all 256 bit slices (or any prescribed subset

of the 256) will be flagged in the response store. These words will

have the same content as the one in the common register (for the prescribed

subset of the 256). The responders can then be processed as prescribed

by the program. The other search instructions are processed in a similar

fashion.

The arithmetic instructions include add , subtract , multiply or

divide one field by another field and place the result in a third field.

This is done on an intraword basis with all activated words taking place

in the operation simultaneously. Also, these operations can be performed .

between the common register and any prescribed field in the array. As

an example, suppose there are two columns of numbers x1,.. . ,x1024 and

4

~ 

-

~~~~ ~ --. — —-—--— ----.--- -- —

----—- —-

_~ _~ _ —~~S _~~~~~~~~~S

,y1024 and one would like to perform the following operation :

+ y~~ — for i 1,... ,1024. With a single instruction, all pairs

of x and y values could be added simultaneously and the resulting z

values placed in a third field.

In addition , one can add , subtract , multiply or divide any f ield by

a scalar. For example, suppose one would like to obtain 2xi for

i = 1,... ,lO24. - In this case one would multiply the x~ by the number in

the common register (two), and obtain the result in the same or an

additional field.

2. STAR/tN Details

Shown in Figure 2 is a block diagram of STAR/tN as utilized by the

matrix inversion program. Each of the blocks is discussed in detail

in the following paragraphs.

The matrix inversion program and the matrix data are stored as

segments in MULTICS. At execution time, they are moved from MULTICS

to the PDP—ll disk. The program and data for STARAN execution are

loaded into ÀY control memory from the PDP—ll disk. After execution,

output is moved from ST/tHAN via the PDP—ll disk to MULTICS and stored as

a MULTICS segment. Details of these steps are included in the third

subdivision of this section.

In addition to providing the communication link between MULTICS and

STAR/tN, the PDP—ll has other functions. Assembly and debugging of STAR/tN

programs are handled by the PDP—ll as well as housekeeping functions,

ST/tRAM maintenance and STAR/tN diagnostics. Also, the PDP—ll provides

the means to initially load ÀY control memory with the previously assembled

object module and any required data.

S

-
~~~

—--
~~~~

-—--
~~~~~~~~~~~~~~~~~ r r r~~.. ~~—~~~~~~~~--——.- .—~~~~ -~~ - — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -- - - - - —



- - —.5--- -. —.-— - . 5 --- -----.5 ’.—.-- .5. — — -..-‘--‘--- — —5- -.5--.-- .5— .5- —- —
r - 

- . .~~~. : _
~~~~~~~~~~~~~~~~~..- ..~

I

M’ CXNI ’IUL S E L). ?4Jiflcs

1x32 ~~.

A~~~~~ Y 0

256 x 256 bits

A~~~. Yi

256 x 256 bits

ARR~Y 2

256 x 256 bits

A~~A.Y 3

~‘[256 x 256 bits

PIGJ~~~~ 2. A Block Diagram of ~ri~~ Ar~thitscture As Utilized -
-

~~~ Matrix Inversion Program.

6



As shown in Figure 3, ÀY coutrol memory is partitioned into several

sections: the Page Memories , the High Speed Data Buffer (HSDB) and Bulk

Core Memory. The three Page Memorie8 each have 512 32—bit words and

use solid—state elements which have cycle times of less than 200 nano-

seconds. Page 0 is used to store a subroutine library. Pages 1 and 2

are used in a ping—pong fashion; that is, ÀY control reads instructions

from one page while the other page is being loaded by the program pager.

Each memory has a port switch to prevent premature access before it is

loaded.

The HSDB is a 512 32—bit memory which also uses solid state elements

whose cycle tines are less than 400 nanoseconds. Its purpose is to

provide a convenient place to store data and instructions for quick

access.

The Bulk Core Memory has 16,384 32—bit words of storage; it is

composed of nonvolatile core with a cycle time of less than one micro-

second. Bulk Core Memory is used to store the assembled program and .

any data required by the program.

The primary function of ÀY control is to control the associative

arrays as directed by instructions stored in ÀY control memory. Shown

in Figure 4 is a detailed block diagram of Al control as it appears in

[4] on page 1—10. ÀY control fetches an instruction from Al control

memory and places it in a 32—bit instruction register; the address of

the instruction is contained in a 16—bit program counter . .‘.i control

consists of nine basic elements which are discussed be1o~ .

7

. 5-  .5- -~~~ - -- 
- - .5~~~~~~~~~ -- -.5- - --— -

~~~~~~~
-—--- ---—--——-

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _— -- -— --.5--—- ~~

I
~

Bulk

Core
Page 0 Page 1

- Page 2
HI gh

512 512 512
Speed Memory

words words words Data

Buffer 16,384 words

512
words

I

- —
Port Switch Logic

L...... Port Priority Switch Logic 1

-

.5-—
---f~~~~~~~L

Al Control Program Pager Sequential Control

Figure 3: ÀY Control Memory

8

__

~

!—_:__ ~~~~~~~~~~~~~~~~~~~~~~~
-
.
-•-

-
_ -~~~~~~~~~~~~-~~~~: —.5 . i ~__ I . - .

-.5

JOl 1 ~ “fl ~‘-~~~‘ ~
.

~I - — IL __ ,~ ~~~
. • ‘ ~• I ~ ~~~~

‘~LJU. -~ ~
j [dV J

-f 1 -- -- p
_ _

I~~~~~~~~~~~~~~~~~~~~~~~~~~~~
- - - -

_ _ _ _ _ _ _ _

~~~~~~~~ 
:

o _ ! j z

~E~~i i~i :1
:4

~

_

~

Figure 4: SrARNJ 1W Caitrol

9

— -  —— - -- --~~—.--~~~~~~~~ --



1) Instruction Register: The instruction register contains the

instruction being executed, loaded from Al control memory via

the instruction bus.

2) Program Control: The program control logic, composed of the

program counter (PC), the start loop marker, the end loop marker,

the comparator and the status register (IMA.SK), controls the

sequence in which instructions are obtained from Al contLol

memory.

3) Bus Logic: A common data path for all pertinent registers of

Al control and the data bu~ from memory is provided by the bus

logic. The bus is 32 bits wide and the bus shift logic can be

used to shift data as it is moved .

4) Block Transfer Control: The block transfer control is composed

of two registers. The Data Pointer Register (DP) contains the

control address for the data bus for block transfers. The

Block Length Counter (BL) controls the length of a data block

transfer. Both of these registers are 16 bits in length. In

addition to the above function, they can be combined together

or used individually for incrementing or decrementing counters

stored in Al control memory.

5) Common Register: Data to be loaded into the arrays from Al

control memory and output data from the arrays to Al control

memory pase—thru the common register. In addition, arguments

for search operations are placed in the common register. The

common register is also used to broadcast input to the response

registers of all four arrays simultaneously.

10

‘— -.5 ---- -- -- --.-- ----. - - ---

—

~~~~~~~~ - - - -


-—---p-- .5-~~-
- - -- -- -— ..-— --,

~~~~~~-‘-- -- -- --—.5-- - - - .  -.- - .5
____ ____ —

6) Field Pointers and Length Counters: Field pointers one and

two (FP1, FP2) are u8ed for indirect addressing of the arrays;

FF1 is loaded with the array number and FP2 is loaded with the

number corresponding to the word or bit slice desired. The two

field length counters (FL1, FL2) are used as counters for

branching and loop instructions. Field pointers three and

E (FP3, FPE) are used for array bit or word addresses; FPE is

also used during multiply and divide routines and to store shift

constants. All of the above registers are 8 bits long.

7) Response Store Control: The control signals required by the

associative arrays and buffers for correct timing are generated

by the response store control The response store control

consists of the control line conditioner and control line

buffer.

8) Array Control: The array control logic selects the arrays to

be used and controls such things as bit/word mode, mask

operations and shifting. The array select register (AS) is a

32—bit register used to enable the desired array(s). A one

in the bit position corresponding to the array number enables

the array, Bit slice or word slice addressing is controlled by

the array address mode. The shift logic required for shifting

and mirroring operations is generated by control signals from

the flip/shift control.

9) Resolver: Resolver logic is used to find the array address

and word address of the first responder of some search o

11

- 
. ~~~~~~~~~~~~~~~~~~ - — ~~~~~~~~~~~~~~~~~~~~ 

-.—--——------ 
- -



— -- — 
~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ . ..-.. _.

As indicated earlier, the four associative arrays are each organized

as a square 256 words by 256 bits of solid—state storage. Access to the

arrays is possible in either the word or the bit direction. The arrays

may be operated on individually, -all at once or in various combinations

as enabled by the array select register discussed above. Within each

array, it is possible to operate on all or just part of the array by

using a masking operation. Masking in the word direction is done by

loading the M response store register with ones in the position of the

words to be used; masking in the bit direction is accomplished by

directing the common register to operate on a specified field. The

X and Y response store registers can be used to logically combine data

for storage into the arrays or the M register. In the application

program discussed subsequently, we make frequent use of the X and Y

registers for data movement and for loading the N register.

3. Utilizing RADC STAR/tN

There are four required steps for utilizing STAR/tN at RADC. First,

the source code must be written and stored as a MULTICS segment; second,

the source program must be assembled resulting in an object module;

third , the object module must be linked with any required subroutines to

produce a STAR/tN load module; and fourth, the load module must be executed.

The first step is to write the source program. Programs to be

executed on STAR/tN are written in the Associative Processor Programming

Language (ÀYPLE) . The MULTICS editors “edm” and “QEDX ” can be used to

create the program , edit it , and store it into a segment. -

The second step in submitting a job to STAR/tN is to create a MULTICS

segment which contains PDP—l1 batch Job Control Language (JCL) statements

12

— .5 .~~~~~~~~~~~~ -~~--~~~ .5 —-.--------- -
— — . 5

-.5 ,

[6]. This segment will reference an APPLE source program , another

MULTICS segment, calling it to be moved from MULTICS to PDP— 11 disk 0.

If the program contains or references any mnemonics, then MAPI’LE is called

to translate the source program into an APPLE object module. MAPPLE is

a collective term used to indicate that both the MAPPLE preprocessor for

translating mnemonics as well as the APPLE assembler are executed , [2 ,3].

The newly created object module can be stored on disk 1 of the PDP—ll

or as a MULTICS segment. A sample MULTICS segment to accomplish the

above is included in Appendix Al.

The third step is to create a multics segment to run the APPLE linker,

ALINK [51. Its purpose is to accept multiple object modules as input;

relocate those object modules and assign them absolute addresses; resolve

symbolic references among them; create an overlay structure upon request;

generate a load map to indicate the absolute addresses of the load module

and the entry point of each load module; and to produce an executable

code, the STAR/tN load module, in a format suitable for loading and

execution. The STAR/tN load module is then stored on disk 1 until required .

An ALINK program and load map are included in Appendix A2 .

The last step is the execution of the STAR/tN load module. Again,

a MULTICS segment is created with the appropriate JCL statements. In

this case the machine is instructed to execute ST/tRAM Debug Module (SDM)

which is a system program to detect and locate errors in an application

program [5]. The functions provided by SDM include the ability to dump

the contents of memory locations, to inspect and change a memory location

or register; and to print a table of preselected memory locations and/or

registers in P.P Control Memory, Parallel I/O Control Memory and Array

13

- r~~~- -

~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~ 
—

~~~~~~~~~
- -

~~~~~~~~~~~~~~~~
---— - 

- 
-



r 
. -—- - — — - - — - —

Memory. The functions desired are included in the MULTICS segment to be

submitted to STAR/tN. An example program is included in Appendix A3 .

Matrix Inversion

The algorithm utilized for matrix inversion in this work is basically

Gaussian elimination adapted for use on an associative processor. Column

operations are performed rather than row operations, and only one row of

the identity matrix is appended at any given time. The reader is referred

to [1] for an example that illustrates this method.

Because large matrices are to be inverted, it is desireable in

testing to use a matrix which can be generated automatically and whose

inverse is known. Matrices generated with the pattern as illustrated in

Figure 5 have inverses with the pattern as illustrated in Figure 6.

Thus, matrices of this form were chosen for testing.

The system—supplied macros for multiplication, division and subtraction

require three empty fields for intermediate operations. Therefore, the

largest matrix which will fit into the four arrays for inversion is

63 x 63. A 60 x 60 matrix was chosen since it is large enough to

nearly fill all of the arrays. As shown in Figure 7, the data are

loaded into the arrays. The numbers in the arrays indicate the columns

of the original matrix and the numbers to the left of the arrays m di—

cate the word number. For example, column 1 of the original matrix is

replicated four times in field A of each array starting at words 0,64,

128 and 192. The letters at the top of the figure are the names assigned

to the 32—bit fields.

~

- ~~~~~~~~~~~~~~~~~~~~~~~~ -- -.5—
— _

~~~~~~~~~~ _ ~~~~~~~~~~~~~~~~~~~~~ 
-

_________ .
— -~~~~~~~~~~~~~~~~~~~ ‘-

-~~

1 2 3 4

2 2 3 4

3 3 3 4

4 4 4 4

4 x 4 M A T R I X

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

2 2 3 4 5 6 7 8 9 10 11 12 13 14 15

3 3 3 4 5 6 7 8 9 10 11 12 13 14 15

4 4 4 4 5 6 7 8 9 10 11 12 13 14 15

5 5 5 3 5 6 7 8 9 10 11 12 13 14 15

6 6 6 6 6 6 7 8 9 10 11 12 13 14 15

7 7 7 7 7 7 7 8 9 10 11 12 13 14 15

8 8 8 8 8 8 8 8 9 10 11 12 13 14 15

9 9 9 9 9 9 9 9 9 10 11 12 13 14 15

10 10 10 10 10 10 10 10 10 10 11 12 13 14 15

11 11 11 11 11 11 11 11 11 11 11 12 13 14 15

12 12 12 12 12 12 12 12 12 12 12 12 13 14 15

13 13 13 13 13 ‘3 13 13 13 13 13 13 13 14 15

14 14 14 14 14 14 14 14 14 14 14 14 14 14 15

15 15 15 15 15 15 15 15 15 15 15 15 15 15 15

15 x 15 W~TRDC

~~~~~~~~~~~ 5. ~‘attexned Matrices.

15

~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


____ - - . S - - —

—1 1 0 0

1 —2 1 0

O 1 —2 1

O 0 1 ~~~3/4

INVE1~~~E ~P 4 x 4 MATRIX

—1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

1 —2 1 0 0 0 0 0 0 0 0 0 0 0 0

0 1 — 2 1 0 0 0 0 0 0 0 0 0 0 0

O 0 1 —2 1 0 0 0 0 0 0 0 0 0 0

3 0 0 1 —2 1 0 0 0 0 0 0 0 0 0

0 0 0 0 1 — 2 1 0 0 0 0 0 0 0 0

0 0 0 0 0 1 —2 1 0 0 0 0 0 0 0

0 0 0 0 0 0 1 —2 1 0 0 0 0 0 0

O 0 0 0 0 0 0 1 —2 1 0 0 0 0 0

0 0 0 0 0 0 0 0 1 — 2 1 0 0 0 0

0 0 0 0 0 0 0 0 0 1 — 2 1 0 0 0

0 0 0 0 0 0 0 0 0 0 1 — 2 1 0 0

0 0 0 0 0 0 0 0 0 0 0 1 — 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 1 -2 1

0 0 0 0 0 0 0 0 0 0 0 0 0 1 — 1 4 / 1 5

INVE1~ E ‘P 15 x 15 MATRIX

FIQJRE 6. Inverses of the Patterned Matrices

16

~ ~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — ——--- —-- —-~--.5---
I— .

- - — --- —.5------- — — —-,---.-- — - — - - .— - —— _______

A B D E F G H
O -

, l 2 3 4~~ 5~~
6 4 !

1 6 7 8~~ 9

APi~AY ~ 128 t - - - - - - -

1 0 11 12~13

192 ~~~~~

1 14 15 16 17

0
1 18~].9 20 21

64

1 22 23 24 25

~RR~i 1 128
- — — — — ______

1 26 27 28 29

192 — — -t

1 30 31 32 33

-
- L

O
-- - -j--r-—-

~~~1 34 35 36 37

64

1 38 39 40 41
ARRAY 2 128 — — - _______

1 42 43 44~ 45

192 — I - - -  

- 1  46 47 48 49

___ j 
—- - ‘-‘- - -~~~~~~~~~~~ -- -- 

1

O — -  

I
1 50 151 52 53

64 ~~~~~~~~~~~~~~~ -

1 54~ 55 56 57

~~~~~~~~~~ 3 128 ~ ~~~ 
-

- -

1 58 59 60

192 ,
- — —- - — --- - - J - -

1

F~Q,J~~ 7. A 60 x 60 Matrix Loaded Into the ~~ur Arrays.
17

-- ~~ ~~~~~~~~~~~~~~~~~~~~~ - ~~—— - -_ -. - - —.5--- . A

Although there are more efficient ways to load the data for smalj,er

matrices, by following this loading pattern the matrix inversion program

f presented in this work can be easily adapted to handle any matrix up to

and including a 63 x 63. For example, this program was used to invert a

45 x 45 matrix and a 30 x 30 matrix. In the case of the 30 x 30 matrix,

the data could have been fully loaded into array 0 as shown in Figure 8.

However, this would have required writing a new program. By following

— the loading pattern as shown in Figure 7, the matrix was loaded into

arrays 0 and 1 and inverted with only slight modification of the original

code. The disadvantage in following the loading pattern of Figure 7 is

that the inversion will take longer because this program includes setting

the registers first to enable array 0 and then to enable array 1 whereas

the more efficient configuration in which the data are completely contained

in array 0 would use only array 0 and therefore eliminate several steps.

However , in the case of the 45 x 45 matrix, three arrays would still be

required to contain all the data.

As mentioned previously, the largest matrix which can be fully

contained in the four arrays and inverted using the Gaussian elimination

algorithm referred to previously is a 63 x 63 matrix. Matrices which

are larger than a 63 x 63 require that the data be operated on in stages.

For example, an 80 x 80 matrix was inverted as part of this study. The

algorithm to invert the 80 x 80 matrix first loads forty—nine columns

into the arrays and performs the column operations; then after reading

these results back into Al Control Memory, the remaining thirty—one col—

umns are loaded into the arrays and column operations are again performed.

These results are read into Al Control Memory and the first group of

columns is again loaded into the arrays and the algorithm proceeds as

18

--— -—-- ——-

-- _

-

- -.5- ---- - -

A B D E F G H

1 2 3 4 5

1 6 7 8 9

1 10 11 12 13

ARRAY O 1 14 15 16 17

1 18 19 20 21

1 22 23 24 25

1 26 27 28 29

1 30

Figure 8: An Efficient
~~

y to Lo~ I a 30 x 30 Matrix

19

~~~~~~I1r - — -- _iT~~~~~. -
~~ T . ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~ ~~~~~~~~~~~~~~~~~~ 

.~~~~~~~r ~~~~~~~ .. 
-
. — - -  

~~~~

- -

above. The 80 x 80 matrix was chosen since it was necessary to consider

a matrix large enough to require more than the SThRAN array capacity,

yet small enough to be contained in Al Control Memory.

Matrix Inversion Application Program — General

In this discussion the following notation will be used. Elements

of the original matrix will be designated by au where i is the row

number and j the column number. Recall, the numbers in the boxes of the

array diagrams represent the column number of the original matrix. Masks

will be denoted as MI(J) where I is the array number (0,1,2,3) and J the

position of the mask in the array (1,2,3,4). For example, M0(3) means

that array 0 has a mask in the third quarter , that is, words 128 to 191.

The data are loaded into the four arrays as previously illustrated

in Figure 7. Each box is sixty—four words in length thus dividing the

arrays into four equal quarters in the word direction. In the case of

the 60 x 60 matrix, each box will have 60 words of matrix data, one word

of identity and three empty words. The identity row is appended to the

top of the original matrix and will move down through the matrix row by

row as the inversion proceeds.

Each array is divided into eight thirty—two bit fields in the bit

direction. Fields A,B,C,E, and F are used to hold matrix data; fields

G and H are used for intermediate results of the arithmetic operations;

and the last field is used to store the masks and to provide a bit slice

required by the arithmetic operations.

The prop-am begins by dividing field A with the first diagonal element

of the matrix, a11, to create the identity element (one) in this diagonal

position. Note that the identity row is in word 0. Masks M0(l), Mi(l),

20

M2(l) and M3(l) are loaded . Field A is multiplied by elements a12 , a118,

a1 34 ~nd a150 by successively loading the above matrix elements into the

common register and using the system—supplied macro to multiply field A by

the common register. The results of the multiplication are placed in field

H. Next, Masks M0(2), M 1(2) ,M2(2) and M3(2) are loaded, and field A is

successively multiplied by elements a1,6,
a1 22, a138 and a15 4 in the

same way as above. The third step is to load mask M0(3), M l(3) , M2(3) and

143(3) and multiply field A by elements a1 10, a1 26, a142 and a158 as

above, Lastly masks MO(4), 141(4), M2(4) and M3(4) are loaded and multiplied

by elements a1 14, a130 and a1 46. Note that element a162 does not exist

since the matrix dimension is 60 x 60. At this point field H is full; the

mask is set for all words; and the system macro for subtraction is used to

subtract field H from field B placing the difference in field G. Field C

is then moved to field B. This results in creating the identity element

(zero) in each of the positions given above. Moving next to field D, the

operations are repeated with the first element of each column in field D

until field H is full of products. Then, field H is subtracted from field D,

again placing the difference in field G and later moving field G to field D.

In the same way fields E and F are operated on. The result of the above

procedure is that the identity row which was originally appended to t1~e top

of the matrix has now been created in the first row of the matrix; what was

previously the identity row is the first of the intermediate results leading

to the inverse of the original matrix.

The second phase of the algorithm begins by exchanging the position

of columns one and two; the result is shown in Figure 9. The identity

row is in the word 1; and the same procedure as above is used; that is,

first dividing f ield A by a2 2 and then successively multiplying and

21

.5 . 5-— - --

.5. --—-~~~~~~~~ ---—

r —. -— .5--- — - —.5-—,”

~~~~~~~~~~~~~~~~~~ -E.L 1.JL _

2 1 3 4 5

2 6  7 8 9

A~~~Y 0

2 10 11 12 13

2 14 15 16 17

2 1 8 ].~~2O 21

2 22 2 24 25
A~~ .Y1

2 26 2 28 29

2 30 3 32 33

2 34 35 36 37

2 38 39 40 41

—

2 42 43 44 45

2 4 6  47 4 1 49

2 50 51 5 53

2 54 55 5~ 57 

2 58 59 6(

2

FIG.JR~~ 9. The Matrix ~~nfiguration after the First fl eraticm
22

~ 

~~~~~~~~~~~~~~~~~~~~~~~ :— ~~
_

~ ~~~~~~
_ _

~ — —.5--.-- - -
—.5———----

r . 5- -

F subtracting using fields B,D,E and F. The result is the creation of the

identity row in the word 2. Columns two and three are exchanged, and the

a~ithmetic operations are repeated . Then columns three and four are ex-

changed and so forth until each column has been successively placed in

field A. The final arrangement of the data will be as shown in Figure

10; this will be the inverse of the original matrix. A flow diagram of

the general procedure is given in Figure 11.

The reader is referred to Appendix B for a detailed discussion of

the inversion program for a 60 x 60 matrix. The appendix includes a

figure indicating the program variables, a trace map, detailed flow

charts of the program and all subroutines, explanations of the main

program and all the subroutines, and and listing of the main program and

the subroutines.

Timing of Matrix Inversion

For purposes of comparison, the same patterned matrices inverted on

STARAN were inverted using the AlL Plus system monadic DOMINO at Syracuse

University. Matrices with dimensions 5,10,15,20,25,30,35,40 and 45 were

inverted; the times, in seconds, for each of these matrices are summarized

in Table I. The program which calculated these times inverted each

matrix ten times and returned the average of the ten inversion times.

The matrix inversion routines executed on STARAN were broken down

to give the inversion time alone, the time to load Al Control Memory

with the data from the PDP—ll disk 0, the time to load the arrays with

the data and the time to run the complete routine. It should be noted

23

A R D E F G i l

ARRAY O —~~~~~~~ _ _ _ _ _

60 910 11 12

60 13 14 15 16

60 17 18 19 20

60 21 22 23 24 1

60 25 26 27 28,

60 29 30 31 32

60 33 34 35 3i I

60 37 38 39 41
~~~~~~~~~~ 2

60 41 42 43 4

60 45 46 47 4~

60 49 50 51 5

P~~ X~- 3  60 53 54 5~ 5

60 57 58 5 6

60

FI~ J~~ 10. fl~~~ Matrix Configuration at the end of the Progr~ n
24

~ 

~~~~~~~~~~
-:~

- - -, - - -
~~

-
~~~~

-
~~~~~_._ — - - —  - -  4


- --—.5--- - .- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .--~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~ T~~~::

START

_L

~~~

r Load the arrays with
MATRIX A

r~~Eii

[i
~~
iicate column j

~> r f ield of the

~~~~~~~~~E11I~
~Divide the first field

-

by ~~~
- -—

~
j - j + i_ i

~1

-

Multiply the first fiel
by au ; then subtract i

from column j.

_______ — 60?

FIQJRE 11: F1~~ Chart of General Matrix Inversion Procedure

25

_~~~~~~~
T_—

~~~~~~~~~~ 21 :~~
— 

~~~~
-
~~
--- . .1T.

-
~~-~~~~~-. - ~~~~~~~~~ —

Exchange positions of
column i rd !olumm I

Figure 11: Continued

26

.5--— . ----.5 - ~~~~~~~~~~~~~~~~~ ~
-
—.5- -.5 .5— —.5—— —- --- - ———-.5-- .

-

_ _ _ _ _ _ _ _ _ _ _ _ _ _
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

-—.5-

Table I. Tiiuir~ Figur~~ for Inverting Matrices using APL at Syracuse University

Rank of Matrix Tht~ in Seozxls

5 0.017

10 0.117

15 0.300

20 0.683

25 1.300

30 2.200

35 3.300

40 4.756

45 6.767

I i

27

~~~~ .~~~~~~~. 
—

~~~~~~~~~~~~~~
-- -

~~~ ~~~~~~~~~~
--- --

~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - - ~~~~~~~~~
. - 

~~~~~~.


--- -- -—-— ~~- - - —— -- -- - - - --~~~~~~ - - -~~~~~~~~~~~~—-- - —--- - - . ~~~~~~~

that for the 30 x 30, 45 x 45 and 60 x 60 the arrays were loaded once;

however, for the 80 x 80 matrix , the arrays were loaded and unloaded 160

times with intermediate data. Each matrix was inverted five times, and

the timing data were collected for each operation stated above. These

data are given in Tables I I — V. The results are summarized in Table VI.

Shown in figure 12 is a graph which gives a direct comparison of

the matrix inversion as executed on the two systems. The upper curve is

a plot of the APL Plus inversion times; this curve has been extrapolated

to an 80 x 80 matrix. It was necessary to extrapolate to the larger

sized matrices since the standard work space provided at Syracuse University

could not invert a matrix larger than 47 x 47. Also included in Figur e

12 are points corresponding to the matrix inversion times using STARAN ;

these points are indicated by an “x” on the graph. The STARAN times

which are plotted are the inversion times only and do not include loading

Al Control Memory or loading the arrays with the exception of the second

point for the 80 x 80 matrix . Since data movement in and Out of the

arrays is necessary to complete the inversion in the 80 x 80 matrix , the

time to perform these operations is included in the second point to

provide this comparison. It should be noted that when the inversion is

executed using AlL Plus, the data are in the work space and formatted in

the correct way so that the numbers corresponding to the AlL Plus inversion

times do no~ include any data movement either.

Summa~ized in Table VII is a comparison of the inversion times for

the two systems.

Future Research

Goodyear Aerospace Corporation has recently introduced STABAN Model E,

which is similar in organization to the current STABAN Model B except that

the size of the array is increased to 9216 x 256. The larger array size

28

-.5 i~~-_-.~~~ ~~~ . i. _ _ __~~~~~~~~~~~~~ _
____ 1 .TT ~~~~~~~

- - . 5- .5 -

U) ~~ N .-I U) m .—i ~ e’ 0 N U) CM ‘~~U) D O C M U) C M C M N O C ’ 4in
E1 0 0 0 0 .-I U) .-4 CM 0% i-I 0% 0~ 0% 0% 0% 0% U) (‘~I in N

Z 0% 0% 0% 0% CM CM ‘.0 0 .-4 .-I .-4 .-I .-l N N .-l 0 m
H U) U) U) U) U) .~,I .-I .-I 0 ~~ ‘.0 ‘.0 ‘.0 ‘.0 ‘.0 N ‘.0 N U) N

m m m m m in 0~ in c~ in N N N N N 0~ m ~~0% 0% 0% 0’ 0% N N N N N 0 0 0 00 ‘.0 N N ‘.0 N
E 0 0 0 00

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

}

29

- —~~~~~~~

- — - - N

U) U)
H CM in N

0’ 0% 0
0 CM N

in U) N
U) 0 in4 .-l .-l N
N 0 0 N

In •
U)

0’. 0 o
H In U)

0 0’ CM
in in U)
N iO in 0..~ U) r 4 N in
N 0’. 0 N
in CM

•
U)

in
•0’

in -

CS

-~ ~
. ‘.0 in

‘.0 0’ 0% m
0’. CM CM U)

IS U) N N U) ‘.04) U) in in U)
45 ,-4 0’ .-I CM

N 0 0 U)
in C

•

H
H
H

CM N O% .-4 0 ~~~~~~~~~~~~~ in%O~~ .in in . - 4 U) O i n O
it’. in ‘.0 0 CM C” . 00% 0 0’. 0’ 0’, 0% 0% C”. ~~ ‘ U) C’~ CM

0’. 0’. 00’. U) N 0’. U) CM N N CM CM CM CM ‘.0 ‘.0 ~~
. U) 0’NNI f lN N ‘~ ‘ i nL f lN .-C U) U)U) U)U)Z U) U) N U) U) ‘.0 ‘.0 ‘.0 it’. ‘.0 10 in in in in 0 0 0 U) U)

H ~~ ,-4 ~~ i-I ~~ .-I N in 0’. ~) .-4 .-4 .-4 i-f i-I in U) It’. CM U)
N l~ N N N 0 0% 0 0 0 0 0 0 0 0 N N N U) N
CO U) in in UI m CM C’ C’) 0 ~ ~

_ _ _ _ _ _ _ _ _ _ _ _ _ I’~~

30

~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
_~~~~~ ~~~~~~~~~~~~ ~ _ .- . .5 — ~~~~~~_ .  - ---.5-—-—-



.5- -.5-.--- --—----——~ 
~~
—- - •  

_~~~~~~~~~~~ _~~~~~~~~~~~~~~~ —

C”) C”) 0%
H ‘.0 .

~~‘ 0 ‘.0
El U) I-f N

‘.0 N N
U) in i-f N 0
t!i C’) C”) N i-f

CM N 0 0
U)

-f i-I

U) U) U)
H C”) 0 0 N
El C” ) 0’. i-f U)

‘.0 m 0%
El N ‘.0 N 0

-.4 U) C” ) N N U)
CM ‘.0 0 0%

‘I.

0
‘.0

0
‘.0

IS
i-f U) i-I ‘.0o CM C”) i-C

‘44 in i-I
El ‘.0

lii U) ‘.0 N u-f
4) U) C” ) 0’. CM N

CM S 0 0

H C”. ~~. U)
U) -l

El

U) u-I C”. ’~ ’ .-4~~ ’ U ) %O i n U ) U )  0 % 0’ U ) O ’ .i-f
0 ‘.0 it’) C’) CM ~~ ‘ C”) C”) ~~ 0 U) 0 0 0 0  i-I N Ifl ~~

u s,’. .-4
U) U) in 0’. m in 0’. ~~

. C”) ‘.00’ .  U) i-f i-I .-f i-I u-f U) ~~ ‘.0 N CO
m ~ ‘.0 ‘.0 CM i-f C”. 0% C”. U) ~~ ‘ ~~~ ~~~ ~~ ‘ ~~ 0% N U) .~

u i-f
El ‘.0 ‘.0 CM ‘.0 ‘.0 ~~

. ‘.0 in ‘.0 in N N N N N 0 ‘.0 i-I N N
Z C”. C’) C’) C”. C” ) 0% i-f i-f N in CM CM CM CM (‘4 0 p.4 CM i-I i-f
H C M C I C M C M C M  N NN’O N 0 0 0 0 0  0’ . O O O O

Hi ii I

_ _ _  

I ill 
_ _ _ _ _ _ _  

I

31

_ _  .5 
_

— - — —.5-



- - - -.5- - — --. - - - - ---.- .-. .5 .5 .- - . 5 .~~~~~ —~~~~~ 

U) ‘.0
i-I 0’. in

H 0 C’) U)
El 0 5 ‘.0 0’.

0 0’. ~~ ‘ a’.
..4 El 5 0 p-f C”)

U) U) ~~‘ U)
4) ‘.0 N 0’. ‘.0

CM N C’) u-I
CM C)

0
U)

—— ——.5- _ _ _ _ _ _ _  _ _ _ _ _ _ _

0
U)

1.1 0 ‘.0 i-I N
o H 0% CM U) 0’
4-1 El u-f C U) ‘.0in 0’, ‘~~‘IS El 0% 0’. C’) CM
4) U) U) N ~~ ‘ 0

‘.0 U) 0’. U)

CM N C’) u-I
CM C’)

OCM .-1N0 010 i—f U)~~~ 0’.U) i-IC”I ’.O N CN
4 U) 000 U )0 ’ .  NC MO ’ .’.OC’)  U ) - I C M U) i - f  NN U’) O’. N
El Cl) ‘.0 C’) 0 C”) i-I C’) 0 0 0 %  5 0 C’) S 00  0’. CM -‘a’ ‘.0 N

0’. ~~ ‘ 001 in C’) ~~ ‘.0 u-f 0’, 0’. it) 0’, ‘~~‘ N U) N 0) ~~ 0Z U) U) NU) 0 ’ .  0 ) 0) 1 00 ) 0  C”) C”)CM,-f C”) O ’ . C M m C M . - I
H U) U) U) U) U) C”) N U) N N ‘~~ ~~ ‘ ~~ ~~ ~~ ‘ 0’. CM U) ~~‘.0 ‘.0 ‘.0 ‘.0 ‘.0 U) U) U) N u-I 0% 0) 0) 0) 0% N N ‘.0 U) N

CM C M C M C M C M  N N N N N  rn r”)mmt’) u-f u-4 .-f ~~~~~4
CM CM CM CM CM C’) (‘1 C”) C’) C”. ~~

. 
~~‘ ~~‘ ~~‘ ~~‘

_ _  

I Ii !1i
~ I~~~~fH

. 5- --- -



0 -
U) 0’. 0% ‘.0U) u-f in

10 U) N N
0 CM N ,-~ -~.5 U) CM p-f

I

_ _ 
_ _  

:: 
_ _

~~~ I j  j i
I I

33

____ - •:~~~~ *~ ~~~
- -

~~~~
- -

~~~~~~~~~~~~~~~ 
- -

~~~~~~~~~~~~~~~~~~~ 
—-  

-.5—--



.5 
- — --.5——---.- —--- --.- - —---

o x .
~—. 0

I in

C

UI.,

34



- - . 5 - - 
-— .5 .5

.5 —

CM
i-f

CM 0’. S
.
~~~~~~~ U) ~~

. N U)

IS p.4 in i-f C’
U) .-I u-f C”. ‘.0

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
~1

I

~~~~~~4J

35

.5
- -- ~~~~~~~~~~~~ ~~~~~~~~~~ -.5- — .5--.- —-.5 -.5-— - ~~~~~~~ ~~~~~~~~~~~ - - -~~~~



- . 5- . - - - —  

wi ll have a tremendous impact on the matr ix  inversion work. With the

current array size , the largest matr ix which can be ful ly  contained in

the array and inverted is 63 x 63. Once the matrix exceeds that size,

the inversion time increases due to the necessary data movement. This

increase was evident in the inversion of the 80 x 80 matrix. Recall

that the arithmetic operations to invert the matrix required 22.689

seconds; however when the data movement required to accomplish the

inversion is included, the time increased to 33.943 seconds, approximately

a 50% increase in time. Assuming a configuration of four arrays, the

larger array size would completely contain a matrix with dimension 510

and invert that matrix without requiring any intermediate data movement.

Another option being introduced by Goodyear Aerospace Corporation

is a parallel head per track disk (PhD) . The addition of the PHD would

provide the capability to more rapidly load the data into the arrays.

Data loading is another operation which adds to the matrix inversion

time. Again recalling the 80 x 80 matrix, to load data into Al Coni rol

Memory from the PDP—l1 disk 0 required 7.819 seconds; then from Al Control

Memory, the arrays were loaded . Clearly the capability to directly load

the arrays from a secondary device would be advantageous.

Since STABAN now has a larger array and the capability to load and

unload data in a more efficient way, the inversion of very large matrices

seems a feasible problem and should certainly continue to be investigated.

The current STARAN , the PDP—ll minicomputer , and the MULTICS system can

be used to simulate the capabilities of the STARAN Model E and its

peripherals, thus providing an estimate of the time to invert very large

matrices on STABAN.

36

______________________________________ . 5— .--



- .5 — 
.5 -—

Conclusions

The timing data for matrices inverted on RADC STARAN as shown in

Figure 12 indicate that the times to invert matrixes of various sizes

compare favorably with the times to invert the same matrices sequentially

using AlL Plus and thus supports the timing results of RADC—TR—75—73.

Since the expected timing data of this report indicate the comparison

will prove more favorable as rank increases, a fact supported by the

data in this report, it can be seen that the inversion comparisons will

become more dramatic as the matrix size increases.

The new technological advances in STARAN architecture discussed

previously will provide the system with capabilities which will certainly

have a positive impact on the matrix inversion problem.

Therefore, it can be concluded that the results thus far are promising

and that further investigation into the solution of these types of prob—

lems using- STARAN is reasonable.

37

- .5
-

- 
-

-.  
- -- - “.5-



.5 _ ______________

References

[1] Berra, P.5. and Ashok K. Singhania, uuTjming Figures for Inverting

Large Matrices Using the STARAN Associative Processor,uu 
~~J)~ Report

No. RADC—TR—75—73, March 1975. (AD A009643)

[2] STARAN AlPLE Programming Manual , GER—l5637A , Goodyear Aerospace

Corporation, September 1973.

(3] STARAN MkCRO—APPLE (MAPPLE] Programming Manual , GER—l5643 , Goodyear

Aerospace Corporation, September 1973.

[4] STARAN Reference Manual , GER—15636A , Goodyear Aerospace Corporation ,

September 1973.

(5] STARAN Users ’ Guide , GER—l5644 , Goodyear Aerospace Corporation ,

September 1973.

(6] Supplemental MULTICS/STARAN Associative Processor Programmers’

Manual, Rome Air i)evelopment Center, July 1974.

38 

-
.-~
:-:

~. . . 5 . .



- . 5- --- - -.5-.——
- 

----------—-- .--.- ---- - - .5-—- 
~~~~~~~~~~~~~~~~ 

.5—

APPENDIX A

The Programs Required to
Assemble, Link and Execute the
Matrix Inversion Program

A-i

‘
~~~~

“. 
—.5—-— — -‘-—.5-—.— 

.5—



-—-.5 ,—- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ --~~ -— --- -~~~~~~~~~~ .- - - -~~~~~~~~~ .-~~~~ . --. .5-- - - - - .. 5~~~~~~~~~~~ —— .5—

Al. The Assembler Program mat.1

The threefold purpose of this job is to move the source program

from MULTICS to disk 0 of the PDP—ll, create an APPLE obj ect module

and an assembled listing of machine instructions with the corresponding

address by executing MAPPLE , and f inally to store the object module

on disk 1 of the PDP—ll for later reference. These three sections are

delineated by SF1 statements; each section is discussed in detail below.

srI
$J O L~ P Ip M AT 1 E 6 4 I 3 3: i

$RU - ‘ iF
~ /EN

ttf~\: L /EN
it~c -i M T X :t .

-t-t’KO -:::IIIJ MTX1 ~~~~~~~~~

tMU : r. :~r~o<:tKo : ,x:’i
sMu:riIRi-(r’Ki. ,/ L I ’i_

Section one, the first job, is started by the JCL statement giving

the job name and user identification code (U1C) , JOB PIPM,tTl [64 ,33] in

this case. The next statement te11~ the computer to run PIP. PIP

enables the transfer of files from disk to disk in the PDP—ll or from

disk to MULTICS and viceversa or to delete files from a disk. Disk 0

and disk 1 are enabled by the next two statements to assure access to

them. Since it is required to have the most up—to—date APPLE source

program stored on disk 1, delete the program currently stored . Next ,

move the source program MTX1.APL from MULTICS to disk 0. Note the

extension .APL which is used to indicate an APPLE source program. The

f inal two statements update the directory to the PDP—il disk files which

is stored in MULTICS.

~FI
$JIJB MAPF’l I [o4 3~~:i
$RUN M~ F’I ’L .E
t- I:’I\o: MTX: i • , ‘B MU :MTX 1 • ~L,9-: .LI1’ ,c> ~~

I Xi *

A-2

- —.—-------~~~~~ ——— -—--.- :,,~~~:::~~-‘~
- — - - — - ---‘- - - -

~
- -

_ _ _ _ _ _ _ _

J I T~:—’-

The second section 18 initialized by the appropriate JCL card.

Next, indicate the intention of running M&PPLE . The third statement

takes the source program, MTX1.APL which is on disk 0, executes MAPPLE

to create an object module, MTX1.ADB, on disk 0 and an assembled listing

of the machine instructions with the corresponding addresses, MTX1.ALS,

in a MULTICS segment. Not€, that the extension .AOB is used to indicate

an object module, and the extension .ALS is used to indicate a listing.

S rI

s i o t~ F I F O U T Eo4~~33:l
SF.’U F T P
tr ik i : MTX 1 • AOB/LIE
t L I K U - : t I K O M T X 1 , f ~’.OE~
li tikO Mlxi AUB/LU

-I ti i’~O M T X i ,AF’ t
iMU : ti:[l~

() - -: 1:iKO : /1) ,i:
i n u : I : ’I R i - (t I ~ :L /L’I
SET

The third and final section is another PIP job initialized by JCL

statement. First, delete the old object module from disk 1 and then

store the new object module on disk 1 from disk 0. The next two statements

delete the object module and source program from disk 0. Disk 0 is

cleaned periodically and also used for library routines and therefore

no” u~ed for storage. Finally, finish the job by updating the disk

di -ec.cories on MULTICS.

‘he computer program mat.l is included in this appendix as Figure 13.

A-3

-
-

~~~~~.- 
- “~~~~~~~~~~~~L~~~~~~~~~~~~~~~ --~~~~

’- - ________

. 5- -  -~ -~~~~~ - -.5 .5— --.5. 
- . .-~~~~~ .—---



.5— 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~

“ ~~~~ -~~~-~~ -~~- =-

~- r n~~ L * :L

-~~ 1,1 10/13/76 1219,3 edt Wed

H -

~ _ Ji. !~ - - t ~-- -~~~
~~~ 

—
~~~i

i

~~~~~~~ 1 :/ E N
ä~~~.!K i  ~~~~ X L  ,A ~- - L / L ~E

~L \ O - :hU M TX.L

I~MU D 1R 1 --: 1lK 1 : / t i
SF I
$JOB M A F P L 1  [64,333
sPUN MAPPLE
Ii— LUc() : Mlxi .AOB ,MU: MTXT ,ALS (LIKOUITX1 .APL/S

1- :jQB F’IPOIJ T [64 ,333

~h:tJ F T P
I :1 MTX :1 • AOB/LIE

-~-L ~K 1 ~ -t 1 K0 MTX1 • AO }3
t - t K o : M T x 1  •AOB/ti-E

( I TX 1 * API
t MU E I I R O - :D K Q /tt I
tul U: t I IR :L :tK1 :,‘r ]:
SF1 

-

~ 1219 0,090 0 .4 2 0  20

Figure 13: ‘l1~~ Ass~tb1er Pxogr~ n

A-4

~~~~~~~~~~~ T~~~~ - : - - - -
~~

- --
~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~~~~~~~~~~~~~



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —- -------— - -~~~2 
_ _

A2 • The Link Program alink

The overall purpose of the alink MULTICS segment is to link together

all object modules needed to run the entire program and to create from

these a load module and load map • Note that alink is the MULTICS segment

name. The alink program causes ALINK, the STA,RAN APPLE linker processing

program, to be executed . This segment consists of three jobs delineated

by $FI~. each of which is discussed below.

SE’
$JOB PIP [64 ,33]
$RU N P I P -

M l x i , A L L / t I E

The first part of the program executed PIP to delete from disk 0

the old STARAN load module, MTX1.ALD. Note that the extension .ALD

is used to indicat, a STABAN load module.

SF I
SJOB A L I N K [64,33]
$RU A L I N K
gr’Ko:flTx l ,ALL ,Mu:MTx 1,AMP <t ’K1:MTx1 ,A 0B/B:9000
t < 1 TX2 ,AQB ,ttK L~ MTX3 ,AGB,BK1 Sl.J .AC3B
*DN1:SUBB .AOB,LIK1 SUBC.AOB,EIK 1 SUBD,AUB
SEIK O :FLTSUB * AOB
tDK0tFDvc .AO~~,rIKO:FMPC,A 0B

,tIK0:FLTAS,AQB/E

The second portion of the MULTICS segment is the ALINK job . In this

case, the object modules following “°‘ are linked together to create the

STARAN load module, MTX1.ALD and the STARM4 load map ?frxl.AIIP. The

obj ect modules which are linked together in this program are as follows:

1) The main progr am MTX1.AOB

2) The subroutines

)~rX2 . AOB

MTX3 . AOB

SUM. A0B

SIJBB. AOB

SUBC • AOB

SUBD. AOB

A-5

- .5 -—~~~~~~~~~~~~~~~~~~~~~ - - ~~~ ~~~~~~~~--- ‘—-~~~~~~~~~~~~~
— .5 .5---- -—- - - - ~~~~~~~~~~~ :-~~~

r -~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~ _~~~~~~~~~~~~~~~~~~~~~~~~ ‘_~~ _

- 3) System macro s

F~LTSUB.A0 B floating point subtraction

FDVC .AOB f loat ing point division

FMPC.AOB floating point nultip lication

FLTAS.AOB required f loating point routines

A sample load nap , Figure 15, is included in this appendix fol lowing

the listing of the ALINK job , Figure 14.

:HII - ‘ I T Li-Il:’

TTUR :L l-i T -~1. •AL II/ LIt—

I El R I -(LI R 0 : ~ r x i. ,
;TI MU I:IIRO:t 1K0 /tl .L

‘I tlIR.T . (LINi LL!l

‘-.5 -H- I

The last portion of this segment is again a PIP job. Its purpose

is to delete the old load module from disk 1 and then store the new load

module on disk 1. Finally, the directories to the disk files are updated .

A3. The Execution Program edm

The sdm MULTICS segment is composed of three jobs delineated by $FI

statements. Note that sdm is the name of the MULTICS segment which will

cause SD)!, the STARAN Debug Module System program, to be executed. Both

the first and the last jobs are PIP jobs for moving data. The middle

section is the SDM job which includes several of the debugging features.

Each of these sections is discussed below.

-T F- H- ’
I: H -

1 i I , t i : :~ _:- -
T. —

-

-; c ; - -~’:~~’-

~~~~~~~ 

-
-

A-6

- ~~~~~~ - 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — A


F’ 1’ ~ 1 - k

Sr I
~ JEJ L’ - - I F [:64 ~~ .1
$RIJN p iF
ILIRO : MIX * Al t I / I I E
i l l
-l JIJE N K [64 ~~~ 1
$RLJ (I. I N K
o n I ~o: M 1 x l •A L. . tl , M u : M T X : L , f—! E1 I-- - - - . t K l :T’H -~:L • t l IJl:~ ~:~~~~~O’ . J

4x ,l K i :MrX2 ,A (:) E4, t l L~:L : M T . X , : s . A U L~y E l E :i. H:H H-.’A i--Ui: l

~tlIs i : SUBB • A014 x:’i~ 1 : SU B C • AO B LU’~i ST)El tl ,

~L K 0 : F L T SU B . A C) E ,
ILIRO : FEIVC • AOE ~ I LIKO : F M F ’C , A (JP- LIKO : I:: L T r-l~) - - I L L ’ ’
•SFI
$JOB F’ I F’ENLI t ::6-4 :53
SRI) F :E F’
-L LIR :I : MTX1 • A L L / U P
f U R l ::: L l KO :Hrx: I, , A l ,, tl
t M U :1:1 .1 R 0-(I:’Kc : ,‘ti
1N1LI:tl :ck1- :;LK:l. .-‘i.’ T

F’

r 1220 0.089 0,6~ () 25

Figure 14: The Link Program

A-7

~~~~~~~~~~~~~~~~~~ ~~~~~~~~~ 
~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~4


- I •

T’- rx i .~~MI- - ’ :i. ’ II.- - .-~ ; ~~~~~~~~

Mlxi , • A M P O I J N R 0 0 2 - 0 1 0 S ’ — O i : T - - : J . <~~)- :L i3

LOAD MI:TEIIJLE NAME: M~ iN
LI - C At l 1f RESS : * -$:**

PROL.,J:~ J L;E:c:~’ ioNs: LOW F-T] :cT --~ ~~~~
- -REI,.,00,:- 900C 9 ‘E1 ~ -

~
-

- (ASS :- 0(’_ -) ~,- ‘,i- - - C’ - - .

OBJECT MC)t (JLE N A M E : M A I N
I I’ OS’ AM ~CC r1ON~ L (~W HIT

- ,FE,I,,,OC ::- 90~~)0 922’G
-(ASS :- 0000 0000 C

F ’RO GR A M E N T R I E S :
CONST 901E COHN I ER 9(
VALUE 90 1C - CC~~~T ,1 9-:.~1~--
CONSI 2 9019 C O N S , I 9(; 1LI
CONSTO 90 1E

OBJECT M O D U L E NAI ~1E: ****S****

F ’R OG R AM S E C T I O N S : LOT-I I-ITOH S I Z E
<RELOC ::- - 92?c 93E9
<ASS> 0000 0000 0000

FROG RAM ENTRIES:
SU BT 927C

OBJECT MODULE NAME: ******* **F’ROGRAM sECTIONs : LOW H I G H s:[zE
<R ELOC > 93EA 95313 0152

0000 0000 0000
F ’RO C R AM E N T R I E S ~

SUB2 93E ’.A

OBJECT M O DU L E N A M E : *** **~ *~
PROGRAM SECTIONS: LOW H UH S IZE

<REL O C > 953C L”~: i;:: C- -: -
~

<ASs: : - 0000 ‘i~.)(() (-“j O
P R O G R A M ENTRIES:

SUBA 953C

OBJECT M O D U L E NAME : *********
PROGRA M S E C T I O N S L OW H I G H SI Z E

<RELOC> 95? F’ 95C 1 0043
- 0000 0000 0000

PRO G RAM E N T R I E S :
SUBB 957F

** * * * *

Figure 15: ‘Ibe Load Map

A-8

.5-- - - -~~--—.5- -.5-’- - ----——--- -—--- .5-- - - —— -- -~ —--- *—- - -- - —.5- - - - - - - - - .5--—--- -.5—--— ---.5—- ‘--.5 -- —----

-
- -

~~~ -- -—~~~~~~~~~~~~~ — —~~~~~~~~~~~~~~~
-- ‘ - -- 

1

OBJECT MODULE NAME: *********
FIOGRAM SECTIONS: LOW H I G H  S IZE

-( RE L QC > 95C2 9604 0043
<ABS:: 0000 0000 0000

F R O G R A M  E N T R I E S :
SUBC 95C2

OBJECT MODULE N A M E : :  *********
F’ROGRAM SECTIONS : . ObJ H I G H  SIZE ~

- : R E L O C >  9605 964? 0043
<ABS> 0000 0000 0000

PROGRAM ENTRIES: -

SUE $D 9605

OBJECT MODULE NAME : FLI SUB
PROGRAM SECTIONS:  LOW H I G H  SIZE

<RELOC::- 9648 96SF 004 8
<ABS> 0000 000 0 O(.ic)

F’ROGRAM ENTRIES:— NORMS 9654 R s rR s  964E
SAVES 9648

* ** * * *** **OBJECT M O D U L E  N A M E  FL IVC
PRO(3RAM SECT IONS LOW HIGH SIZE

9690 96EC OOSD
0000 0000 0000

F’ROG RAM ENT FIj :Es:
FLIVCE$ 961:5 FEIVC$

OBJECT MODULE NAME: FI~1PC
F’ R O GRA M S E C T I O N S :  L O W  H I G H  SI ZE~

<REL0C :: 96Et1 97:38 0041::
<:ABS> 0000 0000 ~OJ 0

PROGRAM ENTI-< :[ES:
FMPC$ 96EE I

OB JECT MO UT h I-,j~~T -1E : FI . TAS
I— F ’ O U , F  AM 5 ( 1  ‘ H i  I I OW HI SF1 5 1/ I-

- ( REU (1 1 .:- 97:3 9 97E13 0053
• ABL -;:. : ocoo 0000 OiiOo

F h’-~O(3RAM EN) R:[ES :
A LIF 1 $  975~3 At ’E- :L S 976E
1SSCJ$ 9 7CH AL . I  E 3N $  97114

ISBC1 5 9 751’ F’IE I  IS 9739
ALIE 5:$ -2 ¶38E:t $ $767

9 / / S  SBC 1$
(, OMRT-ii; 2 )4 ,  SBF ’ 2 i1’
SBC2 *. 9.?A F

T’ 1103 ~~~~~~ 1.698 /0 :L L’ -~~:i. J y  9

Figure 15: Continued

A-9 

~~~~~~~~~~~~ :- —
~~~



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ‘~~~~~~~~~~~ ‘- - ~~~ ‘

The first PIP job is initiallized by the appropriate JCL statement.

The next two statements refer to a file called SDM which is created

initially on disk 0 during the running of STARAN Debug Module. These

statements unlock the previous file and then delete it in preparation

for the new file. Following this, the data file for the 60 x 60 matrix

is unlocked from disk 0, deleted from disk 0 and then copied from the

)IULTICS segment àalled M&T60. These steps assure that the most up—to—

date version of the data is on disk 0 to be called by the program a~

execution time.

$ LLI i.-L. I-)-’.,’- L6 4 y -3 3.. .LI I~i) ~ ItIM

* W A

I C l o : 1 X~l, • i:i L l~~~’ (— :0
. 1--

- . 0
I- . 1 - 1- 2 --’ i’O

-i (- - ‘- 1-10
1- H - -) 4 --- L:.
.
~J. ,F: .fr’i .. SY 1
- t . P -f6~ --MI.

I *
- - 1- IC- - -~

I • F’ -I- 12-- -x :5
4 *

-1.1’) 14- 53
I L; A~

-‘ F I

The JCL statement for the second part of the segment has the usual

job name and UIC number as well as a statement to write a file called

SD)! on disk 0. The SD)! file on disk 0 will contain all the debugging

information called for during the running of the .STARAN debug module.

A sample print—out of this f i le is also included in this appendix. After

telling the system to execute the STARAN Debug Module (#RUN SDM) ,

A-1O

-. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~ .~~~~~
_ :~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

‘ —-
-

— - -—--‘ ~~~~~~~~~~~~~~~~~~ — -- ~~~~~~~~~~~~~ “~~ -
~~~~~~~~~~ .-.- ‘_~~~~~~~~~~

---- -
~~~~~~~~~~~~~~~ 

‘
~

a WAIT command (#WA) is given. This command enables the user’s program

to e- scute properly under conditions which might cause unpredictable

results or a premature halt. The WAIT is followed by a super clear

command (#7’. Next, the STARAN load module is loaded in preparation

for execution; the /NG switch indicates that it is not desired to execute

at this time. The thirteen statements following the load command are

used to establish a print table of AP registers. In this case it is re-

quired that the contents of all P2 registers and all response registers,

namely X, Y, and M, be printed out. SAP is the Start Associative Processor

command. The first address following the SAP command is the first address

to be executed; the second address is the stopping address for the execu-

tion. The print table will print the contents of the specified registers

at the stopping address. If a second address is not specified, the en-

tire program is executed. Following the SAP command , the STAR AN debug

module is asked to create four MULTICS files, each to contain the contents

of one of the associative arrays at the time of the stop address given

above. The .PI command is used to print the contents of each entry in a

Print Table. STARAN Debug Module is then terminated with #TSCM.

Si- I
I:: II ~_T

i_ I - -
-

~-M1J : .1Il ”.0 (; ’ T. :’T ./ 1 i~i

The final PIP job writes the SD)! file with the debugging information

from disk 0 to a MULTICS segment for easy access to the debugging infor-

mation. Directories to the disk files are then updated before the job

is concluded.

The complete edm program is included as Figure 16 and the output of

the sdm program is included as Figure 17.

A—li

‘ ~~-- -—~~~—


~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ——~~~~~~~~~~~~~~~~~
‘ .5-

- I

i c . - L - / ~ ~~~ .I . - b  - -  I L  Wc ~d

~~~~~~~~~ 
- - (i - ~~~~~~~~

1 : 1) 1 F- -~~:-
:~ ur~ —

~i t’~ o : ~~r’ —;~
-
~ ’~

h I I i - ~ .: 14: ~(‘,I-

1 010(1 - :41 ~~~_ . • E: - . 1 - - , . : — A i

11- 1
$JCIB B k -;. 1L~ ..4 ~ 12- i~ [‘N O: SEI~
$F~ UN 511— 1

I WA

- Li LIKO : M T X:L • A L L / N - .:;

4 . F- f O= A P R

t .P+ 1=-XQ
I. F -3- 2~-Y0
I • F+3 - M0
I *
-6 • --1 :; --- Y I
fl • - I - M l

6- ,! f i , . : - -X 3
I- • F -1- 1 .‘~

‘(-:

-) ,.; -~: -

(F
-.5 (1 ~~,

-

1, II ..
SF 1

r 1221. 0.11 1.1,1 2 -3~
-

Fiq~ze 16: ~~~ F~~cuti.~~ Progrmm

A—l2

~~~~~~~ -- .:--- - --.5------- —~~~-~~~~~~~ .5— — 44



— 

PT- SLIM

SDM 07/09/76 1209.6 edt Fi1

$JOB BERRAc64,33]~ DK0:SDMDATE:  —05—JUL—76
T I M E : --23: 14 18
$RUN SLI M
STARAN DEBUG
v E R s I o N :  v 2 .0

**t WA

*** Lri m<0 :MTx7.ALD/NG

FLTSU B
LB OK

**t •P + 0 = APR

*** ,P+1=x0

**t •P+2=Y0

**t •F + 3=M0

*** •P + 4 =X 1

**t  • F+5=Y 1

**i •P + 6 M 1

**1 •P+7-=X2

5*1 .P+ 10 Y2

-1 4* •P 4 - i 1 = M 2

**-t •P + i 7 X3

*** • P + 1 3- - Y 3

1(*I •F + 14 = M 3

Pigure 17: edm Output

A-13

~~lIiiL i~~—• — —,-.- -_ ._ S- •~
. 

~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~ 
----c-

-
~ --

—

-
.5— - --------- --—-- ----------—---- — -—- ------ ---- - ---— “— - — - —. 5------ —.5 ---- — , . 5-’~-.- ———’ -,—-r’--:--~.-~.5-,--’-— ,. ~-.-~~~.5 ,~------

5*1 SAP 9000:90117

~~F B R E A I W O I N T SP AT 90117

5 Mu:OUT1/AR:000:OFF

5*1 MU:ouT2,AR:ioo:1FF

5 fllu:ouT3/AR:200:2FF

5*4 Mu:ouT4/AR :300:3FF

5 .PI

00 F C = H 8075
01 IR = H 3800 2000
02 C H 0000 0000
03 FL 1 = H 00
04 FL2 = H 92
0~ FP1 = H 9F
06 FP2 ~ H 02
07 FF3 = H iF
10 FPE- = H 00
11 IlL = H 0000
12 DF = H O E 4C
13 GET H 8045
14 PUT = H 01148
15 CN T = H 0000
16 A S = H F000 0000
17 SLM = H 8057
20 ELM = H 805C
21 IM SK = H 000E
22 HOME = H 20
01 X0= 00000000 00000007 40000000 00000007 40000000 00000007 40000000 00000007
02 YQ= 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
03 610= FFFFFFFF FFFFFFFF 00000000 00000000 00000000 00000000 00000000 00000000
04 X 1= 40000000 0000000 7 40000000 00000007 40000000 00000007 40000000 00000007
05 Y i = 00000000 00000000 00000000. 00000000 00000000 00000000 00000000 00000000
06 M 1= FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFF F FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF
07 X2= 40000000 00000007 40000000 00000007 40000000 00000007 40000000 00000007
10 Y2= 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
11 M 2~ FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FF F F F F F F
12 X3= 40000000 00000007 40000000 00000007 FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF
13 Y3= 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
14 613= FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF EFEFFEFF FFFFFFFF FFFFFFFF FFFFFFFF

5*4 TSCM
SF I
TIME —23U-630

r 1210 0.559 1.180 65 level 4~ 23

Fi&ure 17: Continued

A-14

— - .5 .5—- .5—---- - ~~~~~~~~~~~~~~~~ -.5-- — -.5- - --—-- -—------ — - .5-- —

- ________ - — —~~~~~ — - —

APPENDIX B
Details of a 60 x 60 Matrix Inversion Program

B—i

—.5-—- —.5
—-----

- - - — - - .5 .5

~~~~~~ . . . _ T( 
___________.5- -~~~~- 

.5 .5 — -.5-- .5 .5.5 —- ~~ _.5J
_ —



‘-
~~~~~~

‘ ::-——- —--‘-------— ------ —-

Bl. Matrix Inversion Application Program Overview

The listing of the APPLE code for the matrix inversion program and

the subroutines required by the program are included in this appendix.

MTX1.APL is the main program. MTX2.APL is the subroutine which does

the division in field A and the arithmetic operations on fields B and D.

MTX3.APL is the subroutine which does the arithmetic operations on fields

E and F. SIJBA.APL replicates a column from the top quarter of an array

in field A; SUBB.APL replicates a column from the second quarter of

an array in field A; SUBC .APL replicates a column from the third quarter

of an array in field A; SUBD.AP L replicates a column from the fourth

quarter of an array in field A. Also, each of the replicating subroutines

appends the new identity row in the proper position.

A list of the variables used by the program is shown in Figure 18;

a trace map of the program and subroutines is shown in Figure 19;

f inally, detailed flow charts and the listings for the program and

subroutines are shown in Figures 20—33.

Each of the programs is broken into small sections for ease of

discussion. The small sections are first discussed in general; then the

listing of the small section is given; finally, the listing is discussed

in detail.

B2. The Main Program: ~fFX1.APL

The main program is initialized in the first section of the program

as follows. The subroutines are defined as external modules giving the

main program access to them; the variables in the main program are

defined to permit the subroutines to access them; the 32 bit fields used

in the program are defined; and the arrays are cleared in preparation

for loading the new data.

B—2

—.5- -- -

--

~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~-- ‘-. -

A: a 32 bit field starting at bit 0

B: a 32 bit field starting at bit 32

D: a 32 bit field starting at bit 64

E: a 32 bit field start~ng at bit 96

F: a 32 bit field starting at bit 128

G: a 32 bit field starting at bit 160

H: a 32 bit field starting at bit 192

COUNT: The matrix dimension; keeps track of the number of column

operations. Count is initialized to sixty and decremented by

one after each column is used in field A. When count is zero,

the program is terminated.

COUNTER: The number of word—wise division (4) is each matrix; used during

the loading operation. Each array is filled by loading sixty— S

one words in fields B ,D ,E and F then skipping three words and

repeating for a total of four times. —

CONST3: Initially 0 but changed during the program; used to point to

the desired array during the arithmetic operations of the

subroutines, SIJB1 and SUB2. SUB1 and SUB2 operate first on

* 
array 0, then array 1, array 2 and array 3. The value in

CONST3 is loaded into FP1 to enable the correct array for the

arithmetic operations.

CONSTO: Initially 1 but incremented during the program; used to load

into FP2 which points to the word that becomes the new identity

word via the arithmetic operations of the subroutines SUB1 and

SUB2.

• Figure 18: Application Program Variables

B— 3

—I-- 
- - - - - -—~~~~~~_ ——.5- ,—

~-.-l-—- ~~~~~~~~~~~~ 
— 

- 
.i 

-



- ‘
~

‘- ‘ ----—--~

VALUE: Contains a number to be loaded into the array select register

(AS). The initial number 80000000 enables array 0 when loaded

in AS. The number in VALUE will be changed later in the pro-

gram by moving the number stored in CONST to this location.

All the arrays are successively enabled by changing the number

in the address VALUE .

CONST: The storage word for the next number to be placed in VALUE;

intially 40000000 which will enable array 1 when loaded in AS.

The number in this location will be changed by the program.

CONST4: The number 20000000 is stored here to be later loaded into

CONST. This number will enable array 2 when loaded in AS.

CONST5: The number 10000000 is stored here to be later loaded into

CONST. This number will enable array 3 when loaded in AS.

CONST1 and

CONST2: These are initialized to three and two respectively. During

the program they are decremented and control the number to be

placed in location CONST.

Fjgure 18: ccs~tinued

B—4

~~~~~~~~~ —~~~~~- - - -~~~~~~~~~-~~~~~~~~~~ —-----
_

---- -~~ --- -- - - - - - -—- --- --‘-- ‘14

- - - -~~~—-— .5 .5-- .- - - —.5 .5— -- -- . - — . - ——_ .--- —.5-- — -‘—------

!‘fl~X1.APL

-
// //

\

\

\\ ~~~~ NNN

r - - - -

/ /
1

_ _

/
/

_ _ _ _

____________ .5— .5 -)

1~ I \;
~~~ _ — 

-

~ -

SUBC.APL

_  
_ _

SUBBJI’L

Figure 1.9: Trace M~p

3—5

- •~~
,- — - -  . --  

—-—.5- .-  _~—_ -— 
~~~

- . ,

.44--.5 --~~ —.5-— ---- .5- -—-~~~- --.5—----- —
~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 



.~~~~~~~~
‘ 

~~~~
T’

• -

I UF~1 _ C5~~ ~~
(tj~~ 11511, ~L’I’r T J p r I

ENI I- : COUN - T ’ E: k , r ’oup V A L U E ~~~~~~
MY Sl i ME i i .~~~CONS r ,CONS ’tO , CONS 1.5

1-: i : .32 - 11.’

2 LI-
:1!

’:

LI- :l-2 T3~ 12
Dl::’ I S ’S : : ~— _~1 _2
[iI~

’ .192 y .32
M i T f : E LIE :—(‘Jji OO(

LI : AS i--I ~
- X ‘ F 9 C) 0’

SET H
C LR F < 0 , 2 2 6)

Initialization of the program is accomplished by the START co~~and;

the label associated With START names the object file produced by the

assembly. The EXTRN mnemonic permits the main program to reference

labels in other program modules; in this case, the la~e1s are in the

subroutines. Subroutines are given access to labels, i.e. variab1e~,

defined in the main program by the ENTRY mnemonic. The ORG instruction

comnands the assembler to assemble succeeding instructions at the

address specified in the argument. Fields are defined via the Define

Field (DF) comeand. The first number in the argument following the DF

cosmand is the first bit position of the field, the second number refers

to the length of the field. STORE is equated (EQU) with the address

3000, the address where the matrix data will be stored. The number

8000 i. a hexidecimal number as indicated by the X preceding it. In

preparation for loading the arrays, the array select register (ASH) is

loaded i ediately (LI) with F000. In this counand, the H in ASH refers

to the high order bits of the array select register; the X preced ing

F000 indicates to the computer the number following is in hexidecimal;

3—6

1 L ~~~~~~~~~~~~~~~~~~-~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~ ~1—
—

-
~~~~~~~~~~

:— - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

the F in F000 which translates from hexidecimal to llll in binary enable.

all four arrays. The M register is set in all four arrays with the SET

command in preparation for loading the arrays. Finally, the arrays are

cleared (CLRF) in u t  positions starting at 0 and ending at 256.

In this next section two parts of the program are considered, one of

which occurs e’- the beginning of the program and the other at the end

of the program. These two sections reference each other and work together

to load the matrix data into AP control memory from a HULTICS segment.

SkIFF SR 
i_ c LI i~i - A

il —c .1 J. 1C ;WAS I ~~~~ 131161’
L..Il~ l~

SL IM Y ILOCK ,l. 12
13 W A I T . t

E R R O R  W A I T
i_ - OF I- si- -: OLIUFF L I N K~ , 13K, HA T6 O E X l  ,4~ E R R O R
DA T A RBUFF L I N K , S T O R E ’  1464 0v3

L’S
1. 11-4K DC~ 2

The OPEN command must precede all I/O instructions; it prepares the

system for an eventual READ/WRITE instruction. The argument following

the OPEN command references the label of an OBUFF instruction , BUFFER in

this case. The OBUFF instruction contains the parameter information

required by the OPEN instruction. Note , the OBUFF instruction occurs in

the latter part of the program. In the OBIJFF command are up to seven

arguments, aix of which are applicable in this case. LINX ref erences

the label of an expression referencing a required linkword which is two

words of storage in STARAN provided by the progra er and initialized

to zero. The second argument is optional; if included, it is the logical

name of the data set, if not, as in this case, two successive come are

B—7 



I

used. The third argument refers to the name of the physical device

associated with the data set , in this case the disk (DK). MAT6O is the

file name of the data set and EXT is the file name extension; these are

the four th  and fifth arguments. The sixth argument is a code which

specifies how to open the file. In this case , 4 will open a previously

created linked file for input via a READ. The final argument, ERROR , is

a STARAN address where control is transferred If an error occurs during S

the OPEN process.

The READ command initiates the transfer of the data into a specified

STARAN buffer. There is one required argument, DATA in this case, which

references the RBUFF instruction which contains the parameter information

required by a READ function. The REUFF instruction occurs in the latter

part of the program. Four arguments are required by RBUFF. LINK, the

first argument, references the same linkword provided by the OPEN command.

STORE Is the address of the first location in bulk core memory for the

STARAN input buffer; note that STORE was previously defined. The third

argument, 14640 , gives the maximum number of eight bit bytes of data to

be input. The final argument selects the mode of transfer; in this case,

3 selects unformatted binary.

IOWAIT is an instruction to allow the user to determine when the

input buffer is filled. The f irst  argument is required and references

the same linkvord referenced previously; the second argument is optional

and specifies an address to which to transfer control while the I/O

process is still in progress. In this case , the control is transferred

to BUSY. BUSY is a label in the latter part of the program . If the

program goes to BUSY , interlock number twelve is set. The instruction

following BUSY is a branch back to IOWAIT.

B-8

~~~~IIL - ~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
:is.

~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- - - --— -- 

- -- -



~~PU~~~ 
- ~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~ 

.5-- - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

The close command is always related to a particular OPEN command.

When the I/O is finished, the CLOSE command is executed , thus releasing

the system for the next instruction. The final instruction of this

section, SAVE, is one word of storage used for temporary storage of a

counter as the program runs.

In the portion of the program which follows, the initialization of

the program continues.

.1 .1.
I—Il

coN~;-F4 X ‘ $O~)OO~)OO -

(,::c)FI1~1:3 t~€:
CON S 1- . j. . c t ._ 2
L O O N I E R  :1 :. 4
C 1)1,114 C (. S SE

1311 ‘ ~~ _5j~~c : - _ - - - -

CL IME I’ .1 L I .  3
.0 ( 1 1 :- I L  I lL

1312 X -

S The constants (DC) referenced by the main program and the subroutines

are defined. Recall that the X preceding numbers indicates they are

hexidecjmal. The initial statement is a branch (B) around the constant

definitions; the branch is necessary since these are non—executable

statements. All of the constants above are fully explained in Figure 18.

The objective of this section is to generate masks used by the

program during subsequent arithmetic routines and then to store these

masks in the arrays for future reference.

B—9

_______ - 
~ ‘~~--

~~ J~ 
____i~~ ~~~~~~~~~ ~~~~~~ ~~~_



~~~~~ --  - - - ~~~~~~~ .- - - - _ - . .

L:LK X
CLR Y

CLR N
L132 C ,X ’ F F F F F F F - F ’
I3EN.32 X ’ -420088A-E ’
GE N,32 >-. -422011i_340’
C-EN,32 X’40009943’
L M,Y

(3EN,32 X ’1~~F~5O OO 1’
1-IEN ,3 .2 X ’4 O C O E 3 1 3 5~~’
CLR 11
L FIp Y
(3EN,32 X’1AF60001’
GEN , ~2 :< ‘4oCoB8~31,’
CLR H
L.
OEN,32 X IAF70001
[3MM .32 X ‘ 40C08652 ’
CLI —:

GEN~ 32 X ’ I AF 3 0 0 0 1 ’

Before using the response store registers , (X,Y,M) they are cleared

(CLR). The LI32 co~ nand loads all thirty two bits of the common

register (C) with the hexidecimal number FFFFFFFF. When translated to

binary, this number is thirty—two contiguous ones. Following the loading

of the C, there are three machine instructions which first load the

contents of the C into bits 0 to 31 of the Y register; second , load the

contents of the C into bits 32 to 63 of the X register; and finally

logically OR X and Y leaving the result in Y. The net result is sixty—

f our ones in bits 0 to 63 of the Y register. Note, it is necessary to

proceed in this way since loading a response register from the common

register automatically clears the rest of the register.

The contents of Y are loaded (L) into H, the mask register. Since

this mask is used many times in the program, it is stored in a bit

slice of the array for future reference. The next machine instruction

stores the contents of H into bit slice 75(245) of all four arrays.

B-b

~~~~~
. • 

~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .


Recall the Y register has ones in bits 0 to 63, the top quarter of

the register. The next machine instruction shifts the contents of Y by

64 bits with the result that there are now one8 in the bit positions

64 to 127. Next clear (CLR) H ii~ preparation for loading (L) N with

the contents of Y. The machine instruction following the loading of M

stores the contents of the H register to bit slice 76(246) of all four

arrays.

It is now necessary to generate the mask for the third quarter.

This is accomplished by a machine instruction to again shift the contents

of Y by 64 bits so tha t the ones now occur in bit positions 128 to 191.

Again clear (CLR) H in preparation for loading (L) Y into N. The next

machine instruction stores the contents of H into bit slice P7(247) of

all four arrays.

The final section is again a repeat of the above. The Y register

is first shifted by 64 bits so that the ones are in positions 192 to

255. Then, after clearing (CLR) H, load (L) the contents of Y into M

and finally store H into bit slice P8(248) of all four arrays.

The net result of this section is that there are four masks for

future reference which are stored in the arrays for easy access by the

program.

In this portion of the program data are loaded into the arrays,

specif ically f ield A, which will contain the first column of matrix

data. The column is loaded once and then replicated in field A, four

times in each array.

B—li

-- .5 --~~~~~~ -~~~~~~~~~~ -.5- - -_~~~~~~~ - . 5~~~~~~ - ______ ____-_ --- — -- ~~~~~~a~~~~~~r- -

- -.-_Pf -—-~ ~~~ -— i_. l-
~~~

_ —J-
~ — ~PWi~~ ~~~~ . -_

— ‘1.

I. . i. 
- LI—

j l_ ——

L~ Cl -c ~_ I 1

: : SS S ’, L L  i l l

C.. C2 —
~: I—

I F E  ,..(.l c c i ~~

LL. ~-.

- 
~- ~.: C; I S . I

U I S S . H  ,S- .~. .-~ 
- 1~~c ,. L ’ i . .  -~~

- —

~;~~~ S;~ c ~~~~~~~ c c ’  

: . ; ;SS.c - ~ y ,.~.I _ - _ ~- c - - ,_ 0~;Ll c 
L E N  p .32 X ‘ -40 ‘ I M S E .

c.;Ll-I~ E2 X’4c . ‘ -  -- 12’
UEN ,3$ x ‘ 400 < : tlb12

— .3.1 - -c - - C-M .:i i i_E .SS: -

-:1: 1:: -: -‘ 3~ _ _ - _ ‘ —
_ :~ - : c E (.-( 1- - : _ :

Initially, FPE, one of the field pointers, is loaded with 61 since

61 words of data are to be loaded. After each word is loaded, FPE will

be decremented; when it reaches zero, the program will branch out of the

loading operation. DP, FF1, and FF2 are initialized to zero. DP is a

counter used to move progressively through the data buffer in STARAN

mi~mory. The field pointers initialize the array and word. The first

word from the buffer STORE modif ied by DP , that is with DP added to the

address , is loaded into the common register with the load register (LR)

command. The value 2 automatically increments DP. The number in the

common register is then stored in the array (SCW) from field A of the

common register to field A of the array in a position selected via the

field pointer., FPI and FF2. After each word is loaded, FF2 is incremented

resulting in a move to the next word in field A. FF1 is not incremented

since load array 0 will continue to be loaded. The counter FPE is

decremented EDECR) ; and , as long as it is not zero, the program will branch

(BNZ) back to the beginning of the load operation (LOADA).

B—l2

~~~~~: ~~~~~~~~~~~~~~ -- 
_
~~~~ ~~~~~~~~~~~~~~~~~~~~~~~ —-—--.5- -.5—- - --~-- . 5-  —— .5——--—-- .5- .~



—— —~~~~ 
~~~~~~~~~~~~~~~ __ - —

The next section of the program takes the data from field A and uses

the response store registers to replicate it four times in each array.

The loop to achieve replication is initialized by setting the field

pointers to zero and clearing the response store registers, X and Y.

The loop proceeds as follows.

1. Loop thirty—two times to address MOVEA. The loop is performed

thirty—two tines since each word is thirty—two bits long.

2. Load bit slice selected by FF2 of words 0 to 31, into the

common register.

3. Load the common register into Y, bits 0 to 31.

4. Load bit slice selected by FF2 of words 32 to 63, into the

common register.

5. Load the common into X, bits 32 to 63.

6. Logically OR X and Y leaving the result in Y. At this point

one bit slice of f ield A is in Y , bits 0 to 63.

7. Store Y into X.

8. Shift Y by 64 bits; this results in the Y register containing

the bit slice in position 64 to 127.

9. Logically OR X and Y leaving the result in Y. Y now contains

the bit slice replicated twice in bits 0 to 31 and 32 to 63.

10. Store Y into X.

11. Shift Y by 128 bits. Y now contains the bit slice replicated

twice in bit positions 128 to 191 and 192 to 255.

12. Logically OR X and V and store the result in Y. This results

in Y containing the bit slice replicated four times.

13. Write V into all arrays in the bit slice pointed to by 772;

increment FF2.

B—13

—.5— - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The final statement is a no—operation used here to allow for automatic

speed up execution.

In this section the loading operation is continued by loading arrays

0,1,2, and 3, in that order, until all the matrix data are in the arrays.

This section is specifically concerned with loading f ields B,D,E and F in

arrays 0,1 and 2. Array 3 is loaded in the following section of code

since the data configuration for array 3 differs from arrays 0,1 and 2.

-PE,ol

L .I I
1_ DALI

S t B L , 4
C R C’c-STORE:. (tiF),~5
SEW 4 ’ I-I

i- - . 2 , I T U R E (t IE , -~

C- T. I

C ,s rOREI tF -)
~~3

L.R C ,S T O R E (t i F) ,3
SCW
INCR FF>2
LIECR FPE
BNZ,FPE LOA D
R F ‘1,3
INCR FF2
SR LIF,SAvE
LR (BL,t ’P),COUNTER
DE CR LIP
SR DP,CCI UNTE R
BZ,t lP NEX TA RRAY
LR IF, SAVE
L~I FPE-,6:i
B LOAD

N E X T A R R A Y LI (BL,DF),4

SR (BLpI’P) P C O U N I I S R
LR L’P,SAV E
LIECR FF3
Li FF2 ,0
[NCR FF1
LI FFE~~~1kIL,I- F’ 3 A R RA Y3
13 L O A D

B—14

.5--
~~~~~~~~~~~ — -----_--~~~~~~~- - _ - -------— .~~~~~~~~~~~ _ ---_-- . — - -

~~~~~~~~~~~~~~~ :.5_


- . 5
‘~~~~~- -~~~~~~~ T.~~~~~ .~~i~~~~~~~~~~~~

- -
~~~~~~~~:

-
~ 

-:

Again , initialize (LI) PFE with 61, the number of words to be -

loaded in each field. FF2, the word pointer, is initialized (LI) to

zero. 773 is loaded (LI) with 3. FF3 i. used to keep track of duplicate

array operations. In this case, arrays 0,1 and 2 are loaded in the

same way; thus, FF3 is initialized by 3. Successively, load (LR) the

common register with data from STORE (DP) and store (SCW) it in the

array in f ields B,D,E and F in the word position pointed to by FF2.

Next, increment (INCR) 772 and decrement (DECR) FPE. If FPE is not

zero, branch (BNZ) back to the beginning of the loading operation LOAD.

When FPE reaches zero, FF2 must be incremented by three to move to the

next 64 word block. (Recall that 61 data words are loaded in each

block). Since each array is to be loaded with four sections of columns,

COUNTER is initially 4 to keep track of the number of sections that have

loaded as follows. First the value in DP must be saved so that the pro-

gram will be able to continue the loading operation at the correct

position in the data buffer by storing the value in DP (SR) in location

SAVE. Then the COUNTER is loaded (LR) into the two registers BL and DP.

It is necessary to load into BL and DP combined since each is a 16 bit

register and the number in COUNTER is a 32 bit number. However, since

the number of significant digits of the number is small , it will be

fully contained in the lower—order bits, that is, DP. Therefore, to

decrement COUNTER it is only necessary to decrement (DECR) DP. The new

value of COUNTER I. then saved by storing (SR) DP in the memory location

COUNTER. The value of COUNTER is tested next, which is still in DP. If

the value is zero, branch (BZ) to the address NEXTARRAY to load the next

array. If the COUNTER is not zero, continue in the same array by again

B—l5

-.5- --



— - -----——--- — _ __ -_ - __ -~~--‘-_ - - —- _----—--. —--- _ — - _ . — . - - - -- — - -- ——— -— --- ~~~~
__

~~~~ ~~~~~~~~~~~~ —_-

initializing (LI) FPE to 61 and recalling (LR) the value from SAVE to DP

and branching (B) to LOAD. However, once COUNTER is zero, it is necessary

to begin loading the next array. This means a branch to NEXTARBAY. At

NEXTARRAY, COUNTER is again initialized (LI) to four and stored (SR) at

location COUNTER. 773, which is keeping track of the number of duplicate

array operations, is decremented (DECR). If 773 is not zero, the loading

continues as previously described by initializing FF2 to zero, incre-

menting FF1 (the array pointer), loading (LI) FRE with 61 and branching

to LQAD. However, if 173 is zero, the program will branch (HZ) to

ARRAY3, the loading operation for array 3.

In this section, the last array I. loaded. Recall from Figure 5

the configuration of the data in array 3 ar.’i note the difference from

-
arrays 0,1 and 2.

AR RA Y 3 SR DP.,SAVE
LI (B L ~~JF) , 2

S SR (BL,DF) ,COL’NTEI’-
LFi tIP,SAVE
LI FF2 ,O

LOAIIA3 NOF
LI 13Ly3

S LR C ,STORE (DP) . . 3
SCW
LR C,STORE (LIP),3
SCW
LR C,STORE (EIF c ,3
SCW A p E -

LR C.STORE (DP),3
SCW
INCR FP2
EIECR FPE
BNZPFPE LOAEIA3
SR [IF,SAVE
LR (E{L,LIP) ,COU NTER
DECR
SR (E:L,EIP) p COUNTER
BZ,DP LAST
LR LIP,SAVE
RPT,3
INCR FP2
LI FFE,61
B LOALI A3

B—16

.5 ~~~~ ‘-~~~~ ‘A: ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
- -—--

--
_ _ _ _ _ _ _ _ _ _

~~~~~~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~
— —

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

This section begins a pattern which is repeated sixteen times.

First, branch and link the subroutines which perform the necessary -

arithmetic operations. These subroutines are explained in full detail

in the following sections. Then, after the appropriate masking, the

data are moved so that the next column to be used as the pivot is moved

into field A. The counter which was initialized to the matrix dimension

is checked and, if it is zero, indicating the inversion I. complete, the

program is exited; otherwise the program continues with column operations.

BAL,R7 St..IM :l .
B A L , R /  SULL-:

NEXT LR AS H,V A LU E
GEN-’32 X’OE3F~ OOO~3’LI VE- A p O
LIVF B,A
LI V E 6 ,13 -

R ( BL piiE ) , COUN~lIFER ElF
BZ’I.IF OUT
SR (BL,tIF ) ,COIJNT

- 
L I  ASH,X-F00-O’ 

-

BAL .,R7 SUBA

The branch and link command (HAL) is followed by one of the branch

and link registers (Ri). This instruction transfers control of the

program to the subroutine SUB1 after storing the Execution Location

Counter of the next instruction in the branch and link register. Briefly,

SUB1 will divide field A to create the identity element and then perform

the arithmetic operations between column A and columns B and D. Next

branch and link as above to subroutine SUB2; SUB2 performs the arithmetic

operations between field A and fields E and F. At this point, all required

arithmetic operations with the column currently in field A have been con—

pleted and the program proceeds to move a new column into the pivot

position. Since the new pivot column will change, the appropriate

array must be enabled. Therefore, load (LR) , the array select register

8—17

- -- -~~ -



- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ‘ -~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~

(ASH) , with the number in the address VALUE. Initially VALUE has

80000000 which will enable array 0. After completing the sixteen

repetitions of this portion of the code which follow, all of the columns

in array 0 will have been used as- the pivot column. The next step will

be to move to array 1 which will be accomplished by changing the number

in VALUE to 40000000 and repeating the program. After completing array

1, VALUE is changed to 20000000 thus enabling array 2 and again repeat

the same code. Finally, VALUE will be changed to 10000000 to enable

array 3 and the code repeated until completion of the inversion.

The machine instruction moves the mask stored in bit slice F5(245)

to the H register. Note in the sections following Lh~t the program will

load from bit slice P5, F6, Fl and 18, depending upon which section of

the array it is desired to work with. Also, each of these masks is used

four times since there are four columns in each quarter of the array to

be used as the pivot. With the appropriate mask in place, the column in

field A is stored in field G. Then, the next column to be used i. moved

into field A. (In this case, field B is moved to field A although in

subsequent repetitions of this code the field moved into A will change).

Finally, the column temporarily stored in field C i. moved (MV!) into

the place just vacated.

At this point it is desired to check to see if all columns have

been used as a pivot. Therefore, load (LR) registers BL and DP with the

counter COUNT, which was initialized to the matrix dimension of 60.

Then, decrement COUNT; and, if it is zero, branch (HZ) to the end of the

program (OUT). Otherwise, store (SR) the new value in the address COUNT.

All of the arrays are enabled by loading (LI) the array select register

(ASH) with P000. The program will then branch and link SUBA. SUBA,

like SUBB , SUBC, and SUED, takes the new data in field A and replicates

8—18

:. ~~~~~~~~~~~~~~~~~~ -



it four times. The arithmetic operations will now begin. The next

sections describe this and continue repeating the above operations until

the matrix is inverted.

This last portion of the program is needed to change the number

stored in VALUE. Recall that VALUE is loaded into the array select

register in the previous sections. Another storage word in address

CONST is used to accomplish this.

L.R ( 13L~ tiF ::

SR ~Iil...,1.c i - ’) ,1(c . - i i
I .E ul - - CONS I
[Nil E (IF
SR 3JF  I ._ LIN~SI i~~

Ii F ~ C ON S i
LIECR DF
CS- C-~ LI I- CO N SI 1
13 Z , h F -  NEX 1’
LF: ( B L ,I : IF ) ,CON Sr4
SR (BL. ,EIF ) ,CONST
L. N [‘P C ON ST 2
[‘FOR OP
SR L E , 0 0  5T2
BNZ,t I P NEXT
LR (BL,tF-),CC ::
SR (BLyLIF ) ,CLN 51
B N E X T

O U T  NO P
NOV-
WA i: ;

The first time through the arithmetic routines, VALUE is loaded

with 80000000, the initial number, enabling array 0. CONST, which

initially is 40000000, is then loaded (LR) into the registers BL and DP

and stored (SR) under VALUE. Next, load (LR) register DP with CONST3

and then increment (INCR) OP and store (SR) the new number at CONST3.

CONST3 is used by the subroutines SUB1 and SUB2 to be loaded in 171, the

array pointer. At this point, the operations on one array have been

completed. CONST3 is therefore incremented so that the program will

move to the next array.

8—19

- -  - ~_~~ !==~~~~.5 - ~_ .5 -
~~~~~ _~~~~~~~~~~~~~~ ~~~~~~~~~~~ .5- -— — - - —.5—- — 

_
_

_ .54

—- -- - -- —----_ - - ----- - —-—----~~~~ —----~--_ -—— - ---_--—~~--—,— - -- - - - - -- - -- ---- -~~~~—

CONST 1, initially 3, is loaded (LR) into the DP register and then.

decremented (DECR) . The purpose of this counter is to count the number

of times VALUE must be changed. If VALUE has been changed three times,

it will then be zero and the program will branch (BZ) to the arithmetic

routines without changing VALUE. Otherwise registers BL and OP are

loaded (LR) with CONST4, initally 20000000 and then stored (SR) under

CONST. Next another counter, CONST2 , is checked by loading (LR) it in

UP, decrementing (DECR) OP and storing (SR) DP back at CONST2. This

counter helps to keep track of the number to be stored in CONST. If

it is not zero, branch (BNZ) to NEXT, the start of the arithmetic

routines. Otherwise load (LR) registers BL and DP with CONST5 and store

(SR) CONST5 under CONST. CONST5 has number 10000000. Then branch (B)

to NEXT.

The last statement is a NOP at the label OUT. This is the address

the program branches to upon completion of the inversion program; that

is, when COUNT is zero indicating all columns have been used as the pivot.

8—20

~~~~~~ -~~~~~~~ ±-~~_ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

-
~~~~~

-
~~~~~~~ _ _

START

.5

INITIALIZATION:
Set program access
Define f ields
Clear arrays
Read data into AP Control Memory
Define program variables

Generate masks
Store masks in arrays I

Load column 1 of matri~
data into array 0

Replicate column 1 in -

all four arrays

-oad remaining data In
ar rays 0, 1, 2 , 3

~~~~~~~~~~ SUB1~~~~~~~~~~~~~

SUB2 

Load f i rst quarter mask
______________________ move field A to G

~~~J~~) move field B to A
move field A to B

(2 —
~~~ 

-
~~ END

- 
d i men s i on?  /

/
- ~. rhart for ‘~fI~Cl .APL

I—21



_ _ _  

.5 

~

—-  - - -- ~~~~-.5- . — 

:~~~~
-:—

~

- - 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

SUBA

I SUB1

SUB2

Load first quarter mask
move field A to G
move field 0 to A
move fiel C to D

Do
column

operations YES
matrix END

dimension?

NO

SUBA

SUB1

SUB2

‘I.Load first quarter mas
move field A to C
move field E to A

L move field C to E

Figure 20: Cczftinued

8—22

-
. 5 — - —- ——.5- - .5 - — - -.5- -.5 -- - - -

- ---.5--—- - -- -.5— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
_ _ _ _ _

1

Do
column
operations YES
- matrix -* END
dimension?

NO

SUBA____

__ SUB1
_ _

SUB2
_________ .5———-

rLoad first quarter mas
move field A to C
move field F to A
move field C to F

Do
column

./ operations YES
matrix

\dinension?
/

NO

- - -

L
SUB1

-
~~~

- 4

Fiqure 20: COntinued

B—23

- ~~~~~~~~~~~~~~~~~~~~~~ -



rr ~~~~~~~~~~~~~~~~~~~ 5- ~~~~~~~~~~~~~~ -~ s :- - 5 - - - ~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
—.5--—- —,—

~
--
~ -~~~

-—.——-———--‘
~~

.5--— - -

SUB 2

Load second quarter mae
move field A to G
move field B to A
move field G to B

Do
column

operat ions
— matrix ES END
dimension?

NO

SUSB
_____

su~i____

SUB2

Load second quarter mae
move field A to C
move field D to A
move field C to D

Do
column

operations YES
— matrix
inension?

No

5

Figure 20: Continued

B—24

- 
~~~~~~~~~~~~ ~~~~~~~~~~~~~~ —--  — --—--- —- - 4


--.5-— — --
- -.5 - ------ -- - —— ---—-—

~~~ 
—

~
:
~~

-:i——- T~~~~~T’~~

I SUBB _~~
_j

SUB1

SUB2

Load second quarter mae
move field A to C
move field E to A
move field C to E

Do
column

operations 
YES

— matrix END
dimension?

NO

SUEB

SUE1

— 

[~~~~~~~~~ SUB 2

[Load second quarter
move field A to G
move field F to A
move f ield C to F

Figure 20: ~~~tinued

B—25

.5_t~~~____ __.5__ - 
~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -  -~~~~~


——-- - .5. -~~ .5.5 —

~

-—---

~
:—

~

--— - -

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

.5 - - — -  .5—--- .5-— -- - ---‘.5-.5-------.5-,-.5------ - -’- - - - - . 5 -  — -

6

Do
column

opera tions
- matrix >~ END

dimension?

NO

SUB2 1
____________ 1

~

Load third quarter mask
move f ield A to C
move f ield B to A
move field C to B

Do
column

YES ,~ END

dimension?

SUBC__

___

~~

BL __I

Figure 20: ~~~tinued
B—26

.

____



- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-
~~~~~~~~~~~ TTT—~~::

(;- ‘

r
[i~~ d thrid quarter inasfl

move field A to C
move field D to A
move field G to_D

Do
column

operatLo:s

,,
>

~~~~~~

SUBC

SUB 1 1

1~SUB2 --- -’-j

Load third quarter maski
move field A to C
move field E to A

L
move field C to E

~~~~~~~~~~~~~~~~~~~~~~~~~~~~ END

Figure 20: Continued

B—27

- - ~~~~~~ 
- 1  ~~~~~~~ _ , ,,.~~~~~~ 4



--

P
______

~~

_

~

S

~ 

1

L .
~T

il
Load third quarter mask]

move field A to C
move field F to A
move field C to F

Do
column

operation.
— matrix Y S — -

- -  

SUE2 J

I~.oad fourth quarter maskimove f ield A to C
move field B to A
move field C to I

Figure 20: ~~~ti.nued

8—28

-
.5 

- . 5 -- ~~~~~~~~~~~~~~~~ ~~~~~
__



F1
~ 

~~~~‘ . 5 . 5~~ . 5 ’  ~~~~~~~ ~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~ - : _______

9

Do
column

operations YES
• matrix -~~. END

dimension?

NO

11

~~~~~~ 1

_ _  
SUB2 1

Load fourth quarter
move field A to C
move field D to A
move field C t o D

Do
column

o
~

e
~:~~r:s YES ,. END

dimension? /

L~~~~D 
-

L SUE1 I
10

Figure 20: COntinued

B—29 
-

- . 5- - —_ . 5-
.5— ~~~~~—- - ---~~~--- • — ---—-- - - - - -—-_— -—.5- ----- — — -J~~



SUB2 J

Load fourth quarter ma4
move field A to C
move field E to A
move field G to E

Do
column

operations YES
- matrix

dimension?

NO

SUED

SUI1 I

SUB2

Load fourth quarter mae
move field A to C
move f ield V to A
move field C to F

Figure 20: Continued

8—30

- .5 -- -- - - -- - --—- -——~~~~~~~~~~~~~~~~~ —-- -



- -— —.5- .5— 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

SUED 1

SUB1

SUB2

ARRAY

Figure 20: Cc*itinued

8—31

-- .5- ~~~~~~~~~~~ ~~~~~~~~ ~~~~~~~~~~~~~~~ .-
-

~ T-i~~_.~~
.5- - - - .54

-

~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~ ‘~~~~
- - - -- - ‘ ~~~~~~~~~

~~~~~
- MT X 1 ,A F L

f’i ! -~ L • ~~i - - L. 0- - 1 : i / 0 .5 ~~~~ - ~~~~

MA I N B I
p - _ ii:~,s_ y

I2O I JNr F_ f--: - f ~~~~~~~~~~ - ~. ~~~~~~~~

(.~tJNSTJ . ,L _ ~~ 3i ~~- _. ~)(‘ ::.-~~
-

- ~~~;- ~

0
A D f - ~

- 32
B LU--

~~~
LI h F

ti E-
F [‘F :128y32
0 ttF

~~ Li F 192 , .32
STORE EOU X ’  B000’

LI A SH~~X ’ F 0 0 O ’
SET I-i
CLRF-

OF-EN BUF~TR
REAL’ L~-iI

W A I T 1  I O W A I T  L I N I - ~ BUSY
‘CLOSE LiNk
B

CON ST5 DC ‘ -t c-~~~K:O00
CONST4 tiC X ‘
CONS T 3 DC 0
CON ST2 [IC
COUNTER [IC 4
COUNT PC
VALUE [IC X $0000000
CONST 1 DC 3
CONSTO tiC :1
CONS T DC X - 40 0C :-0000 ’

CLR X
CLR
CLR M
L:[32 C ’ X ’ F F F F F F F F ’
t-iE :Ny32 X ’4 2 0 0 5 8 A 0 ’
OEN y 3 2 X
0ENv32 X ’ 4 ) ( — 0 ? 9 4 3 ’

C) ENv32 X ’ i A ~~~O Q 0 i ’
( , F  N~ 3 ’  X 4 1 ~ < ‘~
CL.R
L
(3 EN v3 2  X’1AF60001’
6ENy 32 X ’4 0C08852 ’
CL R I-I

(3EN,~32 X ’lAE ?(>OOl’
(3EN ~ 32 X ‘ -40CO~~~~52
CL F~ M

(1,Y

~~~~~~~ X ’  1AF E3000 I

Figure 21: ~WCl.APL Listing

B—32

-
- -

-~~~~~~~~~~~~ - •-~~~~~~~~ - - - - _ _ _ _

—
~
——--------—-- —-

~~
-—--------——- .5 — --

F’ I-
LI F- 0

i__ I
L DA DA F-IDE

,B I (J E~F: (I. F-)
~~~~

BLI ~ A ,A
1. NCR F’2
LIECR F FE.
DN Z FFE L. LN~,X lA
I .  FF12,0
CLR X

L N Y
LODE’ L~2 MO V EA
DEN 32 X ‘ 6 3 i:~0A0FL’ —

0E:N ~32 X / 42008$ 40

t3EF-~’32 X’63C1A0F-ii ’

(3EN 32 X / 42E013E1A()
6ENy32 X’40009943’
GEN , 32 x ‘4000138A2’
(3EN,32 X ’40CO$8~i.~
I3EN,32 X ’  6000994:Y
(3ENy32

X’40808F352’
D E N ,  32 X ‘4000994 3’

MOVE A (3EN~ 32 X ’ 15600002’
N OP
LI
LI FF2 ,O
Li FF’3 ,3

LOAn NOF’
1.1 Cl.. y 4

LR C~, TQRE (t’F-~ ‘3
SCW (~~B
LR C,Ni 1 --:F -~~If -
sc: w • LI

LR C~~STt -:L ( Ul- ‘

SCW
LR
SCW
INCI-

I -F:
BNZ ~:~~: DA L i

I-- I .3
F’2

SR DF’ ,SAYE
L.R (BL,I:IF- )~~CO~:NI ~~I--
tu- . LR
SR OF’ COt JN I
Bz ,t ’P  N E X T A R R A Y
I N  tIF’ ,SAVE

I EP E ~o:1
B LOALI

Figure 21: Continued

B—33

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  . 5—  ~~~~~~~~~~ -



-----.5 ---- --- __ __
~~~5— - .5 __-__-_ —__—--- _-.5_-_ ---_ •_

NE-:xl AR RAY L. Dl... ElF-) 4
(I:~L / [I F- ’) y CUL1 . -: I

L N C - - -
~ I -

Li FP2,0
i~ c: N

: C:- -
~

LI F~- E.
L ,L , l . :F 3 AF -~I-~AY 3
B L O A D

A R F A Y 3 SR LII— SAVE
I (DL I:’ F -)

SR (BL,IIF’) ,COUNTI: R
LR
Li FP2 ,O

LOAL IA 3 NOF :-
L.:i
1_N C .Sr 0pL ::: tIF ,3
SCW (-~l !, B
LR t .:,STORE(J-I- -) ~3
SCW
LR C~ STONE’tIF’)~~- ’
SCW A , E
LR C , S T O R E (D F) , 3
S~ W A~ F
INCR F F 2
[IECR F E E
BNZ,FPE L O A L I A 3
SR LIE- p SAVI.:
L.R (L y CF) LOONIER
LIECR [IF
SR (DL tip) COIJNTEN

BZ,tIP LAST
LR tIF~~SAVE
R E T 3
INCI-~ F- P2
LI Fi-E,61
B LCIALIA 3

LAST LR t’F’~~~SA V E
N P T , 3
INCR FP2
LI FF’E~ 61

LAST A LI EILr3
C, STORE (LIP)

SCW
LR C ,STO R E (D P) p 3
SCW A,tI
LR C~ STORE(t ’P)~’3
SCW A y E
INCR FP2
Lf~ CR FPE
BNZ,FP E LASTA
NOF:

Figure 21: Ca~tinued

8—34

—-- •‘ - ~~ - :
‘

— - —

617 C IV N Y ~~~~~~~~~~~~~~~ I I ~~ ER I~~~~~~~~ E~~ F 2
NAYRIX STARAN ASSOC I AT Ifl

I LMCLAS%IFIED

An
£049617

I :

END
D A f t

3 —78

I DOC

Si

$

p

I i’~ ~ ~~ ~~I .V L~~~~~~~~~~

~ IItII~
2

~~~~~ ~~~~~ O~O~
0

iIJII~II1•il ‘ .25 III1I~ 01.6 .

MICROCOPY RESOLUTION TEST CH~~T
NAIIONAL BUREAU Of STANOARDS I963~~



E~AL~ R7 SUE~1BA L, R7 SUB2
NEXT I...R A S H , V A L . U :

CEN ,32 X ‘
fIVE A ,G
fIV E
fIVE G ,~B
L P (E~L , LiP) C OU NT
IIECR LIP
SZy t i P  OUT
SR (BL,I:Ip) ,COUNT

ASH X’F0001
BAL~ R7 SUE4A
E{A L~~R7 SUi~1
BAL~’R7 SLJ B2
LR ASH , VA! ...UE
GEN,32 X ’ O 8F5 OOO~5 ’
MVF A ,~3
MVF
fIVE G,ti
L.R ( BL. ,IF ) 9 COUNT
LIECR LIP
I~Z ,DP OUT
SR (E1. .. LIP) ,COUNT
LI A S H ,X ’ F O O O ’
BAL,R7 SUBA
BAL,R7 SUFI :L
BAL,R’  SUB2
LR AS H,VA LUE
(3EN.32 X’08F50005’
fI VE A , G
fIV E
fIV E (3~ E
LR (BLpL IP) ,COUNT
tIECR tiP
BZ LIP OUT
SR (BL,LIP) ,COUNT
L A S H , X ’ F O O O ’
EIAL P7 S1.JBA
BAL~ R7 SUB 1
E’AL ,R7 SUIi2.
LR ASH~ VA L iJE
GE:N ~ 31 X ‘
MVF A ,G
fIVE E p A
fIVE G,F
LR (BL,LIF ) ,CCUNT
EIECR LIP

BZ ,t~P OUT
SR (BL LIP) ,COUNT
LI AS H~ X ’ FO OO ’
}~AL,R7 SUBA
EIAL ,R7 SIJEI 1
BAL,R7 SU~ J
L.R A S H’ V A L U E
(3EN ~~ X ‘ O~3f’ 6OOO~fIVE
fIVE
.LIVE

Figure 21: Continued
B—3 5

-~~~~~~~~~~~~~~~ -~~~~
-
~~ 

— --!r~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~ 



- ~---- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-. -~-..-- --.r-~-- —~~~~W~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ..~~~~

, -,-.,-
~~

---, -- -- —---

[P ( BL.pr.I I ,  y i~Ot .j Nf
rI~:ci~
BZ • IF’ 0U1
SR (Fl L , I” F ) CO1J NI’
L I  A S H , x ’ F O O O ’
FIAL. P7 SUBB
BAL’ R7 SUB1
EIA L.R/ S1ll~2
LR ASH ,VA LUE
OEN ~~32 x’08F60005’
fIVE A ,t3
fIVE LI,A
fIV E G,t i
[ P  (BLp tIP ) , COUNT
LIECR tiP
BZ,EI P O U T
SR (BL,tIP) ~COUNT
LI ASHvX ’EOOO’
BAL,R7 SUJ FIB
EIAL,R7 SUB 1
BA L , R7 SUEI2
LR ASH,VALUE
GEN,32 X ’0E3 E60005’
fIVE A ,6
fIVE E,A
lIVE G,E
.LR (BL,IIP) ,COUNT
LIECR LIP
BZ,LIP OUT
SR (BL,tIP) pCOUNT

ASH Y X’EO~ O’
BAL ~p R 7  SUBB
B~iL ,R7 SUB1
BA L , R7 SUB2
LR ASHYVALUE
GENp32 X’ 08F60005’
MV F A , G
fIVE Ep A
fIVE G,F
LR (BL,DP),COUNT
LIECR tiP
BZ,EIP OUT
SR (BL,LIF ) ,COUNT
LI ASH~ X ’ FOOO’
BAL i.R7 SUBB
BA L ,R7 SUB1
BA L ,R7 SUB2
LR ASH Y VA LUE
GEN,32 X ’ O8F7OO O~~’
fIVE
fIV E B,A
fIVE G,B
LR (BL ,L IP) ,COUN
EIECR LIP
BZ ,L I P OUT
SR (BL,EIP),COUN
LI A5H,X ’FOOO’
BAL,R7 SUBC
BAL,R7 SUB1
BA L ,R7 SUB2

Figure 21: Continued

B—36

~~~~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — ----fl



V -

~~~~~~~

—---

~

- ,-—,

~~

.,“- -. ‘.- .‘~~~-.-.-—-~~ ~~~ ~~-.~~—--~~~
—

~— ,.—. — ..-- ._- —-_ ~~ -..
~~~~~~~~~~~~

ASH VA L.(JF
SEN ,32 X ‘ OC~i” 70005’
fIVE A Y G
lIVE t I ,A
MVF (3 Y E1
1_ P ( t~L_ Li F ) , COU NT
I:IE: C; t~ Lii:;
BZ,LIF OUT
SR (BL ,t IP) , C O U N I
L II: ASR~ X ’FOOO’
EIAL. P R ?  ~UBC
BAL,R 7 SUB1
BAL ,R7 SUB2
i__ p ASHYVALUE
c;E:N , ~~ X ‘OFIF’70005
fIV E A~~3
f I V E
fIV E (3,E
LR <B L LIP) COUNT
tIECR tir
BZ,LIP OUT
SR (BL,tiP)~~COUNT
LI A S H yX ’ E O O O ’
BAL .,R7 SUBC
BAL,R 7 SUB1
BAL,’R7 SUEI2
LR ASH Y VALUE
(3EN~ 32 X ’08 E70005 ’
fIVE AvG
fIVE E vA
fIVE G v F
LR ( U L_ y t IP )  ~CUUNT
LIECR tIP
BZ,tiF our
SR (EIL,~~DP) , OUNT
LI A S H ,X ’ F O~)O’
BAL ,R7 SULIC
EIAL. ‘P7 SUB :i.
EIA L,R7 SUB2
LR A S H,VA LU E
GEN,32 X’013E80005’
fIVE A p G
fIVE B~ A
fIVE (3vB
L R  EI L , LiF ,COUNT
LIECR LIP
BZ L IP OUr
SR ( B L  ,LIP )

‘\, COUNT
LI ASH X ‘E~ OO’
BAL,R’7 SUBLI
E4A L,,R7 SIJ EII.
BAL .~R7 SUB2
L.R ASH~ VAL_ UE
(3ENp32 X’013E80005’
fIVE
fIVE t I ,A
fIV E 6,1’
L P ( E~ 1.. Ii F ) , C OLI N T
EIEC R lIP

, tiP OUT
SR (Eli... OP ) CC) UN ‘1

Fiqure 21: Cctitinuei
B—37

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


~

LI ASH,X ’EOOO’
BAL ,R7 SUBLI
EIAL,R7 SUB 1
BAL ,R7 S(JE12.
LR ASH ,VAL ..UE
GEN ,32 X ’O8FI3OOO~~’
MVF A ,G
fIVE E,A
fIVE G ,E
LR (BL,tiP),COUNT
DECR LIP
BZ,t IP OUT
SR (BL ,LIP) ,COUNT
LI A SHyX ’EOOO’
BAL ,R? SUBEI
BAL ,R7 SUB1 ,
BAL ,R7 SUB2
LR ASH ,VA LUE
GEN ,32 X ’08E80005’
fIVE A~ G
lIVE F,A
fIVE Gy F
LR (BL ,LIP),COUNT
EIECR LIP
BZ ,tIP OUT
SR (BL ,DP)~~COUNT
LI ASH ,X ’FOOO ’
•BAL ,R7 SUBEI
BAL ,R7 SUB1
BAL ,R7 SUB2
LR (BLpDP) ,CONST
SR (BL rE ’P) ,VALU E
LR DP ,CUNST3
INCR LIP
SR EIP ,CONST3
LR I’P~ CONST1
IIECR LIP
SR DP ,CONST1
BZ ,LIP NEXT
LR (BL ,LIP),CONST 4
SR (BL,DP),CONST
LR LIP ,CONST2
DECR LIP
SR tlP ,CONST2
BNZ ,LIP NEXT
LR (BL ,DP),00NST5
SR (BL ,DP),CONST
B NEXT

OUT PlOP
NOP
WA IT

BUSY ILOCK,1 12
B WAIT 1

ERROR WAIT
BUFFER OBUFF LINK , ,tIK ,MAT 6O ,EXT ,4 ,ERROR
DATA RBUFF LINK ,STORE ,14640,3
SAVE £16
LINK DC ,2 0

END
END

~~g~~e 21: C~~tini~~~,
8—38

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~ 

-
- -;-_--- ‘~~~ ---i .- - . .. _ . . _. ..

83. The Subroutines.

1. MTX2.APL

The first section of the subroutine consist. of the initiali-

zation conditions similar to the initialization of the main program.

SUB1 START
ENTRY SUB1
EXTRN COUNTER ,FOUR,VALUE

EXTRN CONST 1 ,CONST,CONSTO
ORG 09R

A tIE 0v32

B LIE 32,32
LI tiE 64,32
E tIE 96,32

F OF 128~ 32
6 OF 160 ,32

H tIE 192,32

The first step in loading array 3 is to store (SR) the value

in DP in the location SAVE. The registers BL and DP are loaded (LI)

with two and that value is stored (SR) at location COUNTER. ..n pre-

paration for the load ing of array 3 , LIP is loaded (LR) with the

value previously stored in SAVE and FF2 i. initiaj .lized (LI) with

zero. Note that FPE was initial lized (LI) to 61 by the previ ous

section of code. The loading operation is an exact replica of the

previous operation except that the process is rep eated only two

times; when COUNTER has then decrease d to zero the program branches

to LASTA. LASTA is also a loading opera tion ; however , in this case

the program only load s data into fields B ,D , and E. The loading

procedure is the same as previously described.

8—39

- . ~~~~~~~~~~~~~~~~ ~~~~~~~~ ~~~~~~~~~~~~~~~~~~~ _
,_ _

~~~. —_  _ . . ‘~ , - 
.

— _ —  . _ _



. 
~~~~~~ —_ .--- -_  ...

F’
LI

L..AS1 LI
L.F’~ L 5 1 1 , ;F” I~ ’)

1. 1”; c,s’rORE~ I. . I
ECU A U
LR CyE lur ,.E(i. :,),.3
SCW A , E
INCR E E 2
I IF.: C ~ r F E
BN ’7 ,H I I I..~’S1’ A
N c:’ F

The START instruction is required and must precede any statements

which generate APPLE code, the label associated with START will occur

on the load map . The ~ .itry comuand gives the main program entry to

this subrou t ine at the labe l SUB1. The program is flagged as being

relocatable by the R following the 0 after the ORG statement. The

relocation takes place automatically when the programs are linked .

It is also necessary to define the fields again in the subroutines

in the same way as in the main program.

This portion of the subroutine divides field A to create the

identity element in the diagonal position of the matrix .

SUB1 LI EP1vO
SET II
LR EP2,CONSTO
LC A
FL1VC,240 A vG
lIVE ‘ (3 , A

Th. label SUB1 is the entry point of the main program to this

subroutine . This operation is indicated by loading (LI) field pointer

one (FF1) with zero. Recall , when field pointer one is loaded with

zero, the program is directed to array 0. The response register N is

set (SiT) in all four arrays to enable the division to take place in

8—40

—
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ --~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



each element of field A across all four arrays. Field pointer two

(FF2) is loaded (LR) with CONSTO; CONSTO is initiallized with the

value one. The purpose of CONSTO is to give the word position of

the diagonal element. Since the identity row is appended to the

top of the matrix, the diagonal element will first occur in word one.

This counter will be incremented as the program proceeds. The

common register is loaded (LC) with the number from field A pointed

to by FF1 and FF2. Division of field A by the common register is

accomplished by the floating point routine FDVC. The bit slice (240)

following the FDVC command must be provided to save the original contents

of the K register. Two entries are required as arguments following

FDVC; the first entry represents the dividend and the second the

quotient. The quotient is then moved (MV! ) from field G to field A.

The general idea behind the multiplication routine is to first

perform the multiplication in field B on the top quarter of each

array in succession; second , shift the mask by 64 bits and perform

the multiplication in field B on the second quarter of each array ;

third , shift the mask again by 64 bits and multiply field B of each

array in succession; and finally shift the mask the final time to

operate on the bottom quarter of the array .

PROCESS LI ASH~ X’EOOO’CLR H
GEN~ 32 X’O8F5000~5’
LI BL,4

MULTB LI FP1,O
LI ASH~ X’8O00’LC B
EMPC,240 A ,H
INCR FP1
LI ASi”I,X’4000’
LC B
FMPC,240 A,H
INCR FF 1

8—41

.

~ 

r ..._ ._~~~~~ ..- .... :



~~~~~~~~~~~~~~~~~~~~~~~~

Li ASH,X’2000’
IC El
EHPC,240 A,H
INC R FF1
LI AS HpX ’lOOO’
LC B
EMPC,240 A,H
LI ASH ,X ’EOOO’
LIECR BL.
CLR Y
L Y ,H
f3EN~~32 X’40C08852’
CLR II
L M,Y
NOP
EIZ,BL SUBIB
P FT ,64
INCR [P2
B MU i. ’

~B

First, all four arrays are enabled by loading (LI) the array

select register (ASH) with P000. Then after clearing (CLR) N , the

previously stored mask is load ed from bit slice F5(245) into N with

a machine instructi pn. Recall this mask is on bits 0 to 63, the

top quarter of the arrays. Then the multiplication is initialized by

loading (LI) BL with four to be used as a counter . FF 1 is load ed

(LI) with zero and the array select register (ASH) with 8000 to indi-

cate the intention of beginning with array 0. The common register

is loaded (LC) with the word in field B pointed to by the field

pointers. Recall, FF2 was previously loaded with CONSTO. FMPC is

the floating point arithmetic macro which multiplies all of masked

field A by the common register , placing the result in field H. Bit

slice 240 is used to store the original mask. FF1 is now incremented

(INCR) to one ; and the array select register (ASH) is set to 4000 , thu s

enabling array 1. The loading of common register from field B is

repeated , this time from array 1. The multiple macro FMPC multiplies

field A in array 1 by the common register , placing the result in field

8—42

. . .

F~~~~
T

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

H. FF1 is incremented (INCR) to two, and the array select register

is loaded with 2000 to enable array 2. Again (FMPC) is multiplied, this

tine in array 2. FF1 is incremented (INCR) to three, and the array

select register is loaded (LI) with 1000 to enable array 3. After

loading the common register (LC) with the word pointed to by FF1

and FF2 in array 3, (FMPC) is multiplied. At this point the top one

quarter of each array has been multiplied. The array select register

(ASH) is loaded (LI) to enable all four arrays. BL is decremented

(DECR) to indicate one quarter of the operation is complete. After

clear ing (CLR) Y , the mask from N is loaded (L) into Y. A machine

instruction shifts Y by 64 bits; then , after clearing (CLR) K , K is

loaded (L) from Y. The program is now in a position to operate on the

second quarter of the arrays. If the BL register is zero, branch to

subtraction (SUBT); otherwise, repeat (RPT) sixty—four times the

first instruction following RPT. In this case, increment (114CR) FF2

by sixty—four. This places the program at the correct word position .f or

the columns in the second quarter of the arrays. Finally, branch (B)

back to MULTB and continue as before. This code will be executed

a total of four tines; the first time is on the top quarter of the

arrays (words 0 to 63), the second tine is on words 64 to 127, the

third time is on words 128 to 191; and the fourth time is on words

192 to 255. The final result is that field A will have been multi-

plied by the word pointed to by FF1 and FF 2 in field B for all columns

in field B. The result of this multiplication will be in field li.

In this par t of the code, the subtraction operation is performed

and FF 2 is reset to begin in field D.

8—4 3

L. . . 
~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ . .. -_~~~~~~ . ~~~i._



SUBTB L Y , M
SET H
ESEIE,240 Ei,H,O
fIVE (3 ,0
RPT~~192
LIECP FF2

The subtraction routine begins by setting (SET) N to enable

all words in each array. FSBF is the floating subtraction routine

whose arguments represent the minuend (field B), the subtrahend

(field H), and the difference (field C). Bit slice 240 is used to

store the original contents of N. Field C is then moved (MV!) to

field B; and finally FF2 is decremented by 192 in preparation for a

repetition of the previous multiplication steps, this time in field

D. This returns FF2 to the value it contained before the program

started to multiply in field B.

The rest of the code in this subroutine repeats the above

operations with the exception that the arithmetic routines are

performed with elements from field D rather than field B.

B—44

~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~, 

________________



_ _ _  
S. -—-

START

INItIALIZATION :
Set program ~.ccess
Def ine f ields

1.
Divide Field A to

create the identity
element 1.

~Load first quarter mask

B L 4

__1

~

_ _

In array 0, load the
Common Register with

Q 

the number from field
B which will become
the identity element 0

_ I__
lultiply Fieid A by the
Common Register; place
the results in Field
C.

:n array 1, load the
Common Reg ister with
the number from f ield
B which will become
the identity element 0

Fiqure 22: F1CM thar t for I’WX2J4 PL

8—45

5— 
S - -- ______ -

~~



r

Mu l t i ply Field A by the~
Common Regls :e r; place
the resu lts in Field
c.

[~n array 2 , load the
Common Register with
the number f rom Field
B which will become

L the iden tity element O

Multi p ly Field A by
the Common Register ;
place the results in
Field C.

5” 
-S

In array 3, load the
Common Register with
the number from Field
B which will become
the identity element 0

LI
Multiply Field A by the

Common Register; plac
the results in Field

L. G.

— —5-—-

Decrement BL

/ \
(i ~~ 

Shift mask register ~~ NO -( BL 0
-~~~~~ down 64 bits

YES

4

22: Continued
8—46

______________ - 
,, .—--~-



Subtract Field C
from Field B 

-

FLoad f i rs t  quarter maskj

[
‘Ii,In array 0, load the

—~~ Common Register with( 
2 ‘- ~ the number from Field

D which will become
the identity element

-

1ultiply Field A by the
Common Register; plac~
the result in Field C

In array 1, load the
Common Register with
the number from Field
D which will become
the identity element 0

~4ultip1y Field A by the 
-

Coimnon Register; place
the result in Field C

Figure 22: Continued

B-4~

-=--- ,.-5~
-— n~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - S ~~~~~~ ~~~~~~~~~~~~ -5-S



5~)

In array 2 , load the
Common Register with
the number from Field
D which will become
the identity element
0. __________

Multiply Field A by the
Common Register; place
the result in Field C

____________I,____________

In array 3, load the
Common Register with
the number from Field
D which will become .
the identity element
0. ________

Multiply Field A by the
Cotmuon Register ;place
the result in Field C

Decrement BL

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Subtract Field G from

L Field D
- ——___

Figure 22: Continued

B—48

~~ .
- ‘.: : :-~ — ______

r’ ~~~~~~~~~~~~~~~
-

~~r MTX2 .APL

MTX2 .APL 10/13/76 1230.3 edt Wed

SUBR1 START
ENTRY SUB1
EXTRN COUNTER,FOUR,VALUE
EXTRN CONST1 ,CONST,CONSTO
ORG O,R

A OF 0,32
B OF 32,32
.0 . OF 64,32
E ElF 96,32
F ElF 128,32
6 LW 160,32
H OF 192,32
SUB1 LI EP1vO

SET H
LR FP2,CONSTO
LC A
FDVC,240 A ,G
lIVE (3,A

PROCESS LI ASH,X’F000’
CLR H
6ENr32 X ’O8F~ 0005’
LI BL,4

NULlS LI FP1,0
LI ASH,X’8000’
LC B
FIIPC,240 A,H
INCR EP1
LI ASH,X’4000’
LC B
FMFC,240 A,H
INCR FF1
LI A SHvX ’2000’
LC B
EMFC,240 A ,H
INCR FP1
LI ASH,X ’iOOO’
LC B
E1IPC,240 A,H
LI ASH,X ’F000’
EIECR BL
CLR Y
L YpM
GEN,32 , X’40C088~52’CLR II

lI,Y
N OP
BZ ,BL SUBTB
RPT,64
INCR FP2
B HULlS

Fiqure 23: t .WX2.APL Listing

B— 49

-~~~~~~~ ~~~~~ :. ~~~~~~~~~~~~~~~~~~~~~~~~ ~~~
. — . -S .~~~~~~~—~~~ 5-~~~~~~~~- - -. 5- -~~- ~~ 5-—-

r ~~~~
-i

SUBIB L Y~ M
SET H S

FSBF,240 B,H,G
MVF 6’?
RFT, 192
DECR FP2
LI EiL,4
CLR . ii
OEN,32 X ’08F50O0~5’

MULTO LI FP1~ 0LI ASH~ X’8O0O’
LC El
FMPC,240 A~ H
I$~CR FP1
LI ASH~ X’4000’LC Li
FMPC,240 A,H
INCR FPI
LI ASH~ X 2O00’
LC
FMPC,240 A ,H
INCR FP1
LI ASH,X ’i000’ S

LC Li
FMPC ,240 A,H
LI AE~HpX ’FO 00’DECR BL
CLR Y
L Y,M
GEN,32 X’40C08852’
CLR H
L
NOP
BZ,BL SUBT[I
RPT ,64
INCR FP2
B MULTO

SUBTE’ L Y ,M
SE T H
FSBF,240 El,H,G
MVF 6,0
RPT, 192
DECR FF 2
B 0(R7) H
END
END

r 1232 0.474 1.168 6~ level 2~ 9

Figure 23: Continued

3—50

..
- - ---——-—

~

~~~1S~~ L~ 
.-.--



S _ _ _ _ _ _ _ _ _

2. MTX3.APL

The second subroutine is almost identical to the f i rs t  subroutine .

Its purpose is to perform the arithmetic operations on fields E and

F. Since the identity element in field A was previously created

in MTX2 .APL, that part of the program is not repeated . However ,

the multiplication and subtraction portions duplicate MTX2.APL ex-

cept for the fields they operate on. There is one change, however,

that should be noted . At the end of the subtraction in field F , FF2

is decremente d by 191 rather than 192. This has the effect of in-

creasing CONSTO so that the next tine the subroutine is called, thf

identity element is created in the next sequential position.

B-Sl

~ 

.-
~~
. 
.J —,- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~ . -. 

5- . ,



- —-5~~~. - -5----- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~ . .  -w~~ 
--_ _ _-

~~~~~~~

START

INITI ALIZATI 014:
Set program access
Define fields

ad first quarter mask

B L— 4 -5

n array 0, load the
Common Register with
the number from field
E which will become
the identity element

Multiply field A by the
Comeon Register;place
the result in field C

1
:n array 1, load the

Common Register with
the number fr om field
E which will become
the identity element C

1~~~ tiply field A by th.
Common Register ;pj acs
the risult in field C

Figure 24: Fl(Jsri (3~art for)C~X3.~ PL

3—52

~

.~~~~~~

5
~

5--S5
~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

In array 2, load the
Common Register with
the number from field
E which will become
the identity element

hiltiply field A by the

Common Register; place
the result in field C

In array 3 , load the
Common Register with
the number from field
B which will become
the identity element

~ultip1y field A by the
Common Register;p lace

the result in field C

Decre ment BL

Q4
~~4 r e ~is; N~~~~~~ L 0 ~~~

Figure 24: ~~ttiriued

3—53

_~~~__ ._ !T r ~~~~~~~~~~~~~~~~ •- - —  . 
- 

~~~~~~~~~~~~~~~~~~~~~~~ - 
- ~~1TJ

-- —---— .5. 5-~~ -5-S5S-S-5__5-S5 _~
__

~~~~~~55~_-5S5~

9
ubtract f ield C from

f ield E

~oad first quarter mask

[BL~~~4

array 0, load the
Common Register with

2 )4 the number from field
F which will become
the identity element 0

[Multiply field A by the

Common Register;place

the result in field C

‘I,
In array 1, load the
Common Register with
the number from field
F which will become
the identity elemen t 0

1~Multiply field A by the
Common Register; plac~the result in field C

Figure 24: Continued

B—54

~ 

-_ ~~~~~~~~~~~~~ —~~~~~~~-- T_ .._.



~~~~~~

5-

,;=.~::~:_ ~~~
5- 5-T

~~~~ - ~~~~~~~~~~~~~~~~~ — ---~ -----~-

In array 2 , load the
Common Register with
the number from field
F which will become
the identity element

lultiply field A
Common Register; plac
the result in field C

In array 3, load the
- Common Register with

the number from field
F which will become
the identity element 0

.1
~4ultiply field A by the

Common Register; place
the result in field C

Decrement BL

2 
Shif t mask register NO
down 64 bits BL 0?

ES

Subtract field C from

field F - _ _ _ _ _ _I

Figur~i 24: Continued

B- 55

— -  ~~~~~~~~~- - 5 - —5-—,- - — -—— ~~~~~—~~~~~ 5 -~~~~~~~~~~~—-- -—--  - —5-- - -- “ - 5 -- -  --~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~~~~



- —~~ -“---~~~~~~ —~~~~~ —- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - y

~~r H -r x ~~ • ~ 
- 1..

Ti ..- . -
. : .

SUBR2 :~- r A R T
SH~~2

~~~~~~ORG
A U~-

~.‘ ,

B DF
IJ ElF 64
E i~-
fr
6 11F .

H L-F
SUB2 L.[~~~~~~ ~

CL.R -i
GENy32 . ?~‘~)~ t —

L.
MUL T E L ~ 1~ F/:~~f.f~ ~ ‘~~~~~

‘- - : ~~ - ‘-

LC E
F MF-C v .~4O A ,H

~- 1

LI AS ..~:
‘ 4 o (, 0

LC FE
FMF’C,2-4 () A~ H
I N C R FP:i
LI ~SH,X’2000

’
I C E
FMPC,240 A ,H
INCR FF 1
LI A S H ,X ’ i O O O ’

£
FMPC,240 A,H
LI ASH,X’F000’
tE:c R BL
CLR Y
L Y,M
GEN p 32 X ‘40C088~i2’
CLF~ H
L M ,Y
NO P
EIZ,BL SUBTE
RF ,64
INCR FP2

M III . ~
SUBTE L

SET H
FT3 EIF p24 0 E,H,G

C-’~. ~
RP I ,192
tECR

Figure 25: Ml’X3.?iPL Listing

3—56

— —--— —— ~~~~~~~~~~~~~~~~~~~~~~~~
- - -

- ._r ~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~
- _ - -

-, --

~~PP~~~ : .~~~~~~~~~~~~~~ :
5- -S

~~~~

1.1 BL,4
CLR H
GEN,32 X’O8F~ 0005’
L M,Y

MULS~ F LI FP1,0
LI ASH,X’8000’
LC F
FMPC,240 A~ F-I
INC R F F i .
I J AS !--I -,

LU F
FMPC,240 A,H
IN C R  FP 1
Li ASH~ X ’2000 ’
LC F
FMFC,240 A H
INCR FF1
LI AS H ,X ’ i000’
LU F
F M F C ,2 4 0  A , H
LI ASH,X’FOOO’
EIECR BL
CLR Y
L
GEN,32 X’40C08852’
CLR H
L Mp Y
NUP
BZ~ BL SLJBTF
RPT ,64
INCR FP2
B MULTF

SUBTF L Y~ M
SET H
FSBF,240 F,H,G
MVF
R Fr , 191
LIECR FF2
SR FP2,CONSTO
B 0(R7)
EN Li
E ND

r 1233 0.446 1.418 62 level 2, 9

Figure 25: Continu ed

3—57

_________ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-- 5- - - -. ~~~~~~~ — - 5 - —- —— ~~~~ - —- .5 .—~~~~,--



~ -5-S~~~~S~~~~~~~~~~~ s

3. SUBA.APL

This program take s data from the first quarter of any array

and replicates it sixteen times in field A. In addition, the

routine loads the identity row into the matrix in the new position.

SUB3 START
ENTRY SUBA
EXTRN COUNTER’ FOUR P VALUE ,CONST3
EXTRN CONST1 , CO NST ,CO NSTO ,CONST2
ORG 0,R

A ElF 0,3 2
B ElF 32,32
0 ElF 64,32
E ElF 96,32
F OF 128~ 32
6 ElF 160~ 32
H ElF 192,32

The initial portion of this program has the same purpose as the

initial portion of the previous subroutine. In this case, the entry

point to the subroutine is at the label SUBA .

In this portion of the subroutine the data are replicated in field A.

SUBA LR FFJyCONS T 3
L:i FF2~ 0
CLR X
CLR Y
L.OOP,32 MOVEB
GEN~’32  X ’ 6 3 C O A O F E - ’
(3EN , 32 X ‘ 42C09f3-4()
GEM , 32 x ‘ 63c~I.AoFD
G E M,  32 X ‘ 42E0~: : - i c ’ 5
GEM ,32 X ‘40009943
GEN,32 X’400088A2’
GEM 32 x ‘ 40C08852
(3EN 32 X ‘40009943’
GEN ,32 X’ 400088A2
GE M p32 X ‘ 4080i3852
(3EN,32 X ’40009943 ’

MOVEB GEN~ 32 X’1B600002’
N OP

3—58

~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~ ~~~~~~~~~~~ ~j : _. ~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


Pr... 5-S~5-~~5-555 5_~~~~~~~~~~ _

Except for initializing FF1 with CONST3, this sectiom of the

subrou t ine is exactly the same as the slction of the main pro~raa

which replicates the data. CONST3 is initially 0, indicating the

intention of working in array 0. It i. incremented each t ime the

main program has been executed , thu s moving the subroutine from array

to array.

Here the new identity row is appended to the matrix in preparation

for using a new pivot column.

1.5. 1 FF - :3~ 4
L :I. FF - - .i.0

I LIENTA LE FF2 CONST ()
LIEGE F F 2

i: F E E , 4
ONE L]:~~

’2 C,X’Oi40000~
6GW A y A
RET ,64
INCR FP2
E1ECR FEE
BN ZPFFE ONE
[NCR FF1
LIECR FF3
BNZFFP 3 IttENFA

This operation is intiallized by load ing (LI) FF3 with 4 to

count the arrays; FF1 with 0 to initiate in array 0 and FF2 with

cONSTO , which when decreinented indicates the word position of the new

identity row. Recall that CONSTO was used by the previous arith-

metic subroutines to indicate the positon of the number to be used

for division and multiplication . FFE is loaded with 4 since the

column in field A is replicated four times in each array ; the common

register is loaded (LI32) with one (0140000 tn hex) and the value

in the common register is stored (SCW) into field A in the position

pointed to by the field pointers FP1 and FF2. FF2 is then incremented

64 times (RPT , 64) to place the program in the second quarter; FPE is

B—59

__ S_ S__ ___ _____ -S__—~~~~___ 5-_55_~~.___
~ 5 —~~ —- ——— - — — -5 - .--——~--- - —-—~~ —5” - 5 5 . - ~~.— --——---—- ---- - -55 — —5- -‘5- ---- — -—--——-.---- -- --——----- 5 - - 5

T _ _ __

f i
decremented . FPE is now tested and if it is not zero , the program

br anches (BNZ) to ONE and repeated storing one in field A. Once FPE

reaches zero it indicates that an array has been completed. The program

increments (INCR) FF1 to point to the next array and decrements (DECR)

FF3. FF3 is the counter which counts the number of arrays. If FF3 is

not zero , br anch (BNZ) to the beginning (IDENTA) of the operation and

repeat for the next array ; otherwise continue .

In this section , the zero element of the identity row is stored

in all columns .

LI FP3,-4
LI FP1,0

ILIENT LR FP2.CONSTO
E’ECR FP2
LI. FFE,4

ZERO L132 C,X’SOOOOOOO’
SCW A,B
SCW
SCW A t E
SCW A , F
RET, 64
INCR FF2 -

EIECR FFE
BNZ,FPE ZERO
INC R FP1
EIECR FP3
BNZ,FP3 ILIENT
B 0(R7)

This final portion operates in the same way as the previous

portion except that a zero (80000000 in hex) is load ed into the

co~~on register and that zero is stored into fields B ,D,E , and F of

each array. The procedure is identical to the previous section

except that the program wiet store four times at each step .

3—60

I
~~~~~~~~~~~~~~~~~~~ T. ~~~~~~~~~~~~~~~ 5 ~~~~~~~~~~~~~~~~~~~~~~~~~



- .  ~~~~~
—--  

- 

~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~
- - -

~~~
--

~~
. - . 
:~~~~~~~~~

-
~~~~~~~~~~ - —-----

~
-

START

If
INITIALIZATION :

Set program access
Define fields

4

Leplicate data fr om the
first quarter of the
selected array four
times in field A of
all fot r ar ray s

.1

~

kppend the new identity

row______ ______________ 5 j

Figure 26: F1~~ thart for &JBAJPL

8—61

-

~~~~~~~~~~~~~~~~~~~~~~~~ — — —---5- . 44



- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — 5  — -5-- 
.

SUBA .APL 10/14/76 1124.1 edt Thu

SUB3 START
ENTRY SUBA
EXTRN COUT4TER,FOUR ~VALUE,CONST3
EXTRN CONST1 ,CONST ,CONSTO,CONST2
ORG 0,R

A OF 0,32
B OF 32,32
D OF 64,32
E OF 96,32
F OF 128,32
6 OF 160,32
H OF 192~ 32
SUBA LR FP1,CONST3

LI FP2,O
CLR X
CLR Y
LOOP,32 MOVES
GEN,32 X’63COAOFD’
GEN,32 X ’42008840’
GEN,32 X ’63C1AOFD ’
GEN,32 X ’42E088A0 ’
GEN,32 X ’40009943’
GEN,32 X’40008842’
GEN,32 X ’40C08852’
GEN,32 X ’40009943’
GEN,32 X”400088A2’
GEN,32 x’4o8o5852’
GEN,32 X’40009943’

tIOVEB OEN,32 X ’18600002’
NOP
LI FP3,4
LI FP1,0

IDENTA LR FP2rCONSTO
DECR FP2
LI FPE,4

ONE L132 C~~X ’O 14O 0OOO ’
SCW A ,A
RPT,64
INCR FF2
DECR FPE
BNZ,FPE ONE
INCR FF1
DECR FP3
BNZ,FP3 IDENTA

~~gure 27: ~ JM.APL Listing

8-62

- ~~~ -~~~~~~ ----—~~~~--. -- .
-
--5-

LI FP3,4
LI FP1,0.

IDENT LR FP2,CONSTO
DECR FF2
LI FFE,4

ZERO L132 C,X ’80000000’
SCW A,B
SCW A,D
SCW A,E
SCW A,F
RPT~ 64INCR FF2
LIECR FPE
BNZ,FPE ZERO
INCR FF1
OECR FF3
BNZ,FP3 IDENT
B O (R7)
END
END

r 1125 0.332 1.176 56

Figure 27: Continued

3—63

~ --~
r

~

4. SUBB.APL, SUBC.APL, and SUBD.APL

These subroutines are identical to SUBA.APL except that they

use bit slices from successive quarters of field A for replication.

Specifically, SUBA.APL loads the common register from words 0 to 63,

SUBB.APL uses word 64 to 127 , SUBC .APL uses word 128 to 191 and

SUBD .APL uses words 192 to 255.

B—64

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~——=~

--—--
~~~~~

. .



5 ---—— 

START

1

INITIALIZATION :
Set program access
Define fields

-5— i
Replicate data from the
second quarter of the
selected array four
times in field a of

- all four arrays

_ _‘I,_ _

Append the new identi~~~
row 

___________ J

END

Figure 28: Flow Chart for ~ JBB.PiPL

B—65

- — - s  - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~ ~~~~~~~~~ . .s. ._ . .  
—



__________ - . . . .. . _ _~____ _ -~~~~~~~~~~

~ r SUBB.APE. .

SUBB.A PL 10/14/76 1125,6 edt- Thu

SUB4 STAR T
ENTRY SLJBEI
EXT R~4 CO11N FER ,FOUR, VALUE, CONS I :3
EXTR N CONsT1 ,coNST.cONsTo.cc)Nsr:.~ORG O,R

A ElF 0,32
B ElF 32,32

- . 0 [IF 64,32
E LIE 96,3 2
F ElF 128,32
o ElF 160,32
H ElF 192,32
SUBB LR FP1,CONSr3

LI FP2,0
CLR X
CLR Y
LOOP t,32 MOVEC
GEN,32 X ’63C2A0F L”
GEN,32 X’420013840’
GEN,32 X’63C3AOFLI ’
GEN,32 X ’42E088A0’
GEN,32 X ’ -40009943 ’
GEN,32 X’400088A2’
GEN,32 X ’40C08852’
GEN,32 X ’40009943’
6EN , 32  X ’400088A2 ’
GEN,32 X ’40808852’
GEN,32 X’40009943’

MOVEC GEN,32 X ’1B600002’
M OP
LI FF3,4
LI FP1,0

ILIENTA LR FP2,CONSTO
DECR FF2
L..I FPE,4

ONE LI32 C,X’01400000’
SCW A p A
RF’T,64
INCR FF2
EIECR FPE
BNZ,FPE ONE
INCR FF1
DECR FF3
BNZ,FP3 ILIENTA

- Ficiure_29L: ~J~~.APL Listing

8-66

~~IIIIt..III ~~ T ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 5 5  
- =~~~~ —- - . .  .. . .



- -  -- 

~~ i~— 
_ _ _ _  :~~~~~.i --——

LI FP3p4
LI FP1,0

IEIENT LR FP2,CONST()
DEC R FF2
LI FPE,4

ZERO L132 C,X’BOOOOOOO ’
SCW A ,B
SCW A,El
SCW A,E
SCW A,F
RFT,64
INCR FP2
DECR FPE
BNZ,FPE ZERO
INCR FF1
EIECR FF3
BNZ,FP3 IIIENT
B 0(R7)
END
END

1126 0.350 1.080 54

Figure 29 : Cait inued

3—67

- :. -~~~~r~~ - 
—-- ‘~~~ —-~~~- --~- - - — -  — - --~ - - - -— -- -—---—--- - — .. 

—

~~~~~~~~ .


—— — .5--— - . -

- 1~

START

.4,
INITIALIZATION :
Set program access
Define fields

1~Leplicate data from the
third quarter of the
selected array four
times in field A of
all four arrays

peed the new identity
row

4

Figure 30: Fl~~ Chart for 9JBC.APL

B—68

. — - —~~~~~~~~~ —~~~~~~~~~~~~~~~
- - --

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .~~~~ ~~~~
. 

~~~~~~~~~~~~~~~~~~~~~

pr SUBC,APL

SUBC .APL 10/14/76 1 253,8 edt Thu

SUBS START -

ENTRY SUBC
EXIRN COUNTER,FOURrVALUErCONST3
EXTRN CONST1,CONST,CONSTO~ CONST2
ORG 0,R

A OF 0,32
B OF 32,32

- - [i ElF 64,32
E OF 96,32
F ElF 128,32
6 OF 160,32
H OF 192,32
SUBC LR FP1,CONST3

LI FP2,0
CLR X
CLR Y
LOOP,32 MOVEr’
GEN,32 X ’63C4AOFEI ’
GEN,32 X ’42008840’
GEN,32 X’63C5A0F0’
GEN,32 X ’42E088A0’
GEN ,32 X’40009943’
GEN,32 X ’400088A2’
GEN,3 2 X ’40C08852’
GEN,32 X ’40009943’
GEN,32 X ’400088A2’
GEN,32 X ’40808852 ’
GEN,32 X’40009943’

MO VED GEN,32 X’15600002 ’
NOF
LI FP3,4
LI FP 1 ,0

IDENTA LR FP2 ,CONSTO
DECR FF2
LI FF’F,4

ONE L13) C ,x ’O~ 40000O ’
~CW A ,A
RE ,64
INCR FF 2
DECR FEE
BNZ .FFE ONE
IN CR FF 1
E’ECR F F3
F4NZ,FP3 T OENTA

Fig~ue 31: aJa .APL Listing

3—69

5 -‘ — . . . - . — — - -
— -— —--— . -‘-—- — -5- .— -— .

- —-. -

~ .

LI FP3,4
LI FP1.0

IDENT LR FP2,CONSTO
DECR FF2
LI FPE,4

ZERO LI32 C,X’BOOOOOOO’
SCW A ,B
SCU A,Ll
SCW A , E
SCW A , F
RET ,64
INCR FF2
[IECR FEE
BNZ,FPE ZERO
INCR FP :L
OEC R FF3
BNZ,FF3 ILIENT
F’ 0(R 7)
END
E ND

r 1254 0 .S47 0.668 27

Figure 31: Comtinued

3—70

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _~~~~ ~~~~~~~~~~~~~~~ .
.
~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ . .  . 

.__

~~~~~~~~~~~~~~
- ..

- ~~~~~~~~~~

START

[~~ITIALIZATION:

Set progr am access
Define fields

~~p1icate data f rom the
fourth quart er of the
selected array four
tines in field A of
all four arrays

ppend the new identity

L_row

~~~~re 32: Flow Char t for ~ J~).APL

B—7 1

____________ - . 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-

5- . .

er SUBL’ .A PL

SUBD,APL 10/14/76 1127.0 edt Thu

SUB6 START
ENTRY 9USD
EXTRN COUNTER.FOUR~ VA LU E~ CONST3
EXIRN CONST1 , CONST ,CONSTO , CONST2
ORG 0,R

A OF 0,32
B OF 32,32
El OF 64,32
E OF 96,32
F OF 128,32
o OF 160,32
H OF 192 ,32
SUBD LR FP1,CONST3

LI FP2,0
CLR X
CLR Y .
LOOP,32 MOVEE
GEN,32 X ’63C6AOFEI’
GEN,32 X ’42008840’
GEN,32 X ’63C7A0Ft”
GEN ,32 X’42E088A0’
GEN,32 X’40009943’
GEN,32 X ’400088A2’
I3EN,32 X’40C08852’
GEN,32 X’40009943’
GEN,32 X ’400088A2’
GEN,32 X’40808852’
GEN,32 X’40009943’

MOVEE I3EN,32 X’1B600002’
NOP
LI FP3,4
LI FP 1,O

IDENTA LR FP2,CC)NSTO
EIECR FF2
LI FPE,4

ONE L132 C,X ’01400000’
SCW AuA
RPT,6~
INCR FF2
DEC R FEE
BNZ,FPE ONE
INCR EE l
EIECR FE 3

Figure 33: ~ J~).APL Listing

8—72

___________________ -V ~~~~~~~~~~~~~ ~~~~~~~~ -

— . . .--.- 5- ..
~~~~~~~~~~~~~~

5-
~~
5-’

~~~~ 
5- . -——

~~~
-—  .

~~~
,—5-—-- -.—5-_--

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
5- - 5-

~~~~
- 5- ‘5-5-

~~~

BNZ,FF3 I[IENTA
LI FP3,4
LI FP1,O

IDENT LR FP2~ CONST()
DECR FF2
LI FPE,4

ZERO L132 C,X’80000000’
SCW A ,B
SCW A,O
SCW A,E
SCW A r F

- RPT,64
INCR FF2
DECR FPE
BNZ,FPE ZERO
INCR FF1
DECR FF3
BNZ,FP3 IDENT
B O<R7)
END
END

r 1128 0.323 1.198 57

Figure 33: CCtItinUed

B—73

-- 
- 
..~~~~~

. ~~~~ 
_ 

~~~~~~~~ =_ =~~~~~~~~~~ 5- 5 - 5 5 -~5-55- .s ~~~~ - -


r. -5- . -
~~

~: -:~ .~~

-• ‘- -

-
-

-
.

5-

‘tV? - .
- 5-

C

~~~~~~~~~ 

-5

5- . ;

- (
~~ ~~~~~~~~~~~~~~~~

- ~~~~~~ - - . 
- ..&.~.A-

~~~~ ~
-
~~~C


